Skip to main content

Advertisement

Log in

Is the maxillary sinus volume affected by concha bullosa, nasal septal deviation, and impacted teeth? A CBCT study

  • Head and Neck
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Purpose

Various mechanisms play an important role in the growth of maxillary sinus cavities. The purpose of this study was to investigate the correlations of maxillary sinus volume (MSV) with nasal septal deviation (NSD), concha bullosa (CB) and impacted teeth using cone-beam computed tomography (CBCT) images.

Methods

From 55 patients, a total of 110 maxillary sinus images were obtained and examined. Data including age, gender, impacted third molar, canine teeth, NSD, and CB were examined. MSV was measured using the MIMICS software (Materialise HQ Technologielaan, Leuven, Belgium). All statistical analyses were performed using the SPSS (Statistical Package for Social Sciences, version 21) software and p values < 0.05 were considered to indicate statistical significance.

Results

Mean volume of the right maxillary sinus was 13.566 cm3, while the left was 13.882 cm3. The rate of patients with right and left impacted third molar teeth was 49.1% and 47.3%, respectively. The rate of right and left impacted canines was 1.8% and 5.5%, respectively. NSD was found in 56.4% of CBCT examinations and right and left CB were observed in 30.9% and 32.7% of the patients' examinations, respectively. Males had a significantly higher mean sinus volume than females for both sides (p < 0.05). There were no significant correlations between MSV and age (p > 0.05). No significant differences were found between MSV and impacted teeth, NSD and CB (p > 0.05).

Conclusion

NSD, CB, impacted teeth, and age were not found to be related to MSV. Gender had an effect on MSV and males had higher mean sinus volume than females.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Oz AZ, Oz AA, El H, Palomo JM (2017) Maxillary sinus volume in patients with impacted canines. Angle Orthod 87:25–32

    Article  Google Scholar 

  2. Kalabalik F, Tarim Ertas E (2018) Investigation of maxillary sinus volume relationships with nasal septal deviation, concha bullosa, and impacted or missing teeth using cone-beam computed tomography. Oral Radiol. https://doi.org/10.1007/s11282-018-0360-x

    Article  PubMed  Google Scholar 

  3. Jun BC, Song SW, Park CS, Lee DH, Cho KJ, Cho JH (2005) The analysis of maxillary sinus aeration according to aging process; volume assessment by 3-dimensional reconstruction by high-resolutional CT scanning. Otolaryngol Head Neck Surg 132:429–434

    Article  Google Scholar 

  4. Scuderi AJ, Harnsberger HR, Boyer RS (1993) Pneumatization of the paranasal sinuses: normal features of importance to the accurate interpretation of CT scans and MR images. AJR Am J Roentgenol 160:1101–1104

    Article  CAS  Google Scholar 

  5. Kalavagunta S, Reddy KT (2003) Extensive maxillary sinus pneumatization. Rhinology 41:113–117

    PubMed  Google Scholar 

  6. Demir UL, Akca ME, Ozpar R, Albayrak C, Hakyemez B (2015) Anatomical correlation between existence of concha bullosa and maxillary sinus volume. Surg Radiol Anat 37:1093–1098

    Article  Google Scholar 

  7. Pamporakis P, Nevzatoglu S, Kucukkeles N (2014) Three-dimensional alterations in pharyngeal airway and maxillary sinus volumes in class III maxillary deficiency subjects undergoing orthopedic facemask treatment. Angle Orthod 84:701–707

    Article  Google Scholar 

  8. Mozzo P, Procacci C, Tacconi A, Martini PT, Andreis IA (1998) A new volumetric CT machine for dental imaging based on the cone-beam technique: preliminary results. Eur Radiol 8:1558–1564

    Article  CAS  Google Scholar 

  9. Bremke M, Sesterhenn AM, Murthum T, Al Hail A, Bien S, Werner JA (2009) Digital volume tomography (DVT) as a diagnostic modality of the anterior skull base. Acta Otolaryngol 129:1106–1114

    Article  Google Scholar 

  10. Maestre-Ferrin L, Galan-Gil S, Carrillo-Garcia C, Penarrocha-Diago M (2011) Radiographic findings in the maxillary sinus: comparison of panoramic radiography with computed tomography. Int JOral Maxillofac Implants 26:341–346

    Google Scholar 

  11. Shanbhag S, Karnik P, Shirke P, Shanbhag V (2013) Association between periapical lesions and maxillary sinus mucosal thickening: a retrospective cone-beam computed tomographic study. J Endod 39:853–857

    Article  Google Scholar 

  12. Ludlow JB, Ivanovic M (2008) Comparative dosimetry of dental CBCT devices and 64-slice CT for oral and maxillofacial radiology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 106:106–114

    Article  Google Scholar 

  13. Lu Y, Liu Z, Zhang L, Zhou X, Zheng Q, Duan X et al (2012) Associations between maxillary sinus mucosal thickening and apical periodontitis using cone-beam computed tomography scanning: a retrospective study. J Endod 38:1069–1074

    Article  Google Scholar 

  14. Howe RB (2009) First molar radicular bone near the maxillary sinus: a comparison of CBCT analysis and gross anatomic dissection for small bony measurement. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 108:264–269

    Article  Google Scholar 

  15. Al-Rawi NH, Uthman AT, Abdulhameed E, Al Nuaimi AS, Seraj Z (2019) Concha bullosa, nasal septal deviation, and their impacts on maxillary sinus volume among Emirati people: a cone-beam computed tomography study. Imaging Sci Dent 49:45–51

    Article  Google Scholar 

  16. Bolger WE, Butzin CA, Parsons DS (1991) Paranasal sinus bony anatomic variations and mucosal abnormalities: CT analysis for endoscopic sinus surgery. Laryngoscope 101:56–64

    Article  CAS  Google Scholar 

  17. Orhan I, Ormeci T, Aydin S, Altin G, Urger E, Soylu E et al (2014) Morphometric analysis of the maxillary sinus in patients with nasal septum deviation. Eur Arch Otorhinolaryngol 271:727–732

    Article  Google Scholar 

  18. Panou E, Motro M, Ates M, Acar A, Erverdi N (2013) Dimensional changes of maxillary sinuses and pharyngeal airway in Class III patients undergoing bimaxillary orthognathic surgery. Angle Orthod 83:824–831

    Article  Google Scholar 

  19. Aktuna Belgin C, Colak M, Adiguzel O, Akkus Z, Orhan K (2019) Three-dimensional evaluation of maxillary sinus volume in different age and sex groups using CBCT. Eur Arch Otorhinolaryngol 276:1493–1499

    Article  Google Scholar 

  20. Bhandary SK, Kamath PSD (2009) Study of relationship of concha bullosa to nasal septal deviation and sinusitis. Indian J Otolaryngol Head Neck Surg 61:227–229

    Article  Google Scholar 

  21. Elahi MM, Frenkiel S, Fageeh N (1997) Paraseptal structural changes and chronic sinus disease in relation to the deviated septum. J Otolaryngol 26:236–240

    CAS  PubMed  Google Scholar 

  22. Evans R (1988) Incidence of lower second permanent molar impaction. Br J Orthod 15:199–203

    Article  CAS  Google Scholar 

  23. Calhoun KH, Waggenspack GA, Simpson CB, Hokanson JA, Bailey BJ (1991) CT evaluation of the paranasal sinuses in symptomatic and asymptomatic populations. Otolaryngol Head Neck Surg 104:480–483

    Article  CAS  Google Scholar 

  24. Caughey RJ, Jameson MJ, Gross CW, Han JK (2005) Anatomic risk factors for sinus disease: fact or fiction? Am J Rhinol 19:334–339

    Article  Google Scholar 

  25. Stallman JS, Lobo JN, Som PM (2004) The incidence of concha bullosa and its relationship to nasal septal deviation and paranasal sinus disease. AJNR Am J Neuroradiol 25:1613–1618

    PubMed  Google Scholar 

  26. Gencer ZK, Ozkiris M, Okur A, Karacavus S, Saydam L (2013) The effect of nasal septal deviation on maxillary sinus volumes and development of maxillary sinusitis. Eur Arch Otorhinolaryngol 270:3069–3073

    Article  Google Scholar 

  27. Kawarai Y, Fukushima K, Ogawa T, Nishizaki K, Gunduz M, Fujimoto M et al (1999) Volume quantification of healthy paranasal cavity by three-dimensional CT imaging. Acta Otolaryngol 540:45–49

    CAS  Google Scholar 

  28. Fernandes CL (2004) Volumetric analysis of maxillary sinuses of Zulu and European crania by helical, multislice computed tomography. J Laryngol Otol 118:877–881

    Article  CAS  Google Scholar 

  29. Thayyil S, Schievano S, Robertson NJ, Jones R, Chitty LS, Sebire NJ et al (2009) A semi-automated method for non-invasive internal organ weight estimation by post-mortem magnetic resonance imaging in fetuses, newborns and children. Eur J Radiol 72:321–326

    Article  Google Scholar 

  30. Ariji Y, Kuroki T, Moriguchi S, Ariji E, Kanda S (1994) Age changes in the volume of the human maxillary sinus: a study using computed tomography. Dentomaxillofac Radiol 23:163–168

    Article  CAS  Google Scholar 

  31. Emirzeoglu M, Sahin B, Bilgic S, Celebi M, Uzun A (2007) Volumetric evaluation of the paranasal sinuses in normal subjects using computer tomography images: a stereological study. Auris Nasus Larynx 34:191–195

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melek Tassoker.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the Ethics Board Committee of Necmettin Erbakan University University, Faculty of Dentistry (decision no 2019/05).

Informed consent

Not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tassoker, M., Magat, G., Lale, B. et al. Is the maxillary sinus volume affected by concha bullosa, nasal septal deviation, and impacted teeth? A CBCT study. Eur Arch Otorhinolaryngol 277, 227–233 (2020). https://doi.org/10.1007/s00405-019-05651-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-019-05651-x

Keywords

Navigation