Effects of diode laser setting for laryngeal surgery in a rabbit model

Abstract

Purpose

To study the damaging effect of different diode laser settings on vocal folds 7 days after injury in a rabbit model.

Methods

Twenty-one male New Zealand white rabbits were randomized into three groups with seven animals per group. A 980-nm diode laser was used to create a single spot injury in each vocal fold. Different modulation frequencies (10 Hz versus 1000 Hz) in pulsed mode, different powers (3 W versus 5 W), and distinct wave modes of radiation (pulsed versus continuous) were compared.

Results

The extent of the inflammatory infiltrate and ablation crater were greater when using 5-W optical power compared with 3 W. The extent and depth of the inflammatory infiltrate, and the width and depth of the ablation crater were greater with continuous wave mode compared with pulsed mode. The density of collagen fibers only increased when using the laser in continuous wave mode.

Conclusion

The use of the 980-nm diode laser with an output power of 5 W produced an increased extent of thermal injury compared to an output power of 3 W and, more importantly, using continuous rather than pulsed wave mode significantly increased the extent and depth of thermal injury in rabbit vocal folds.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Saetti R, Silvestrini M, Cutrone C, Narne S (2008) Treatment of congenital subglottic hemangiomas: our experience compared with reports in the literature. Arch Otolaryngol Head Neck Surg 134:848–851

    Article  PubMed  Google Scholar 

  2. 2.

    Ferri E, Armato E (2008) Diode laser microsurgery for treatment of Tis and T1 glottic carcinomas. Am J Otolaryngol 29:101–105

    Article  PubMed  Google Scholar 

  3. 3.

    Saetti R, Silvestrini M, Galiotto M, Derosas F, Narne S (2003) Contact laser surgery in treatment of vocal fold paralysis. Acta Otorhinolaryngol Ital 23:33–37

    CAS  PubMed  Google Scholar 

  4. 4.

    Bajaj Y, Pegg D, Gunasekaran S, Knight LC (2010) Diode laser for paediatric airway procedures: a useful tool. Int J Clin Pract 64:51–54

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Fanjul M, García-Casillas MA, Parente A, Cañizo A, Laín A, Matute JA et al (2008) Diode laser application for the treatment of pediatric airway pathologies. Cir Pediatr 2008:79–83

    Google Scholar 

  6. 6.

    Ferri E, García Purriños FJ (2006) Diode laser surgery in the endoscopic treatment of laryngeal paralysis. Acta Otorrinolaringol Esp 57:270–274

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Edizer DT, Cansız H (2013) Transoral laser microsurgery for glottic cancers—complications and importance of the anterior commissure involvement. Istanb Med J 14:12–15

    Article  Google Scholar 

  8. 8.

    Liu S-C, Lin D-S, Su W-F (2013) The role of diode laser in the treatment of ventricular dysphonia. J Voice 27:250–254

    Article  PubMed  Google Scholar 

  9. 9.

    Tunçel U, Cömert E (2013) Preliminary results of diode laser surgery for early glottic cancer. Otolaryngol Head Neck Surg 149:445–450

    Article  PubMed  Google Scholar 

  10. 10.

    Karasu MF, Gundogdu R, Cagli S, Aydin M, Arli T, Aydemir S et al (2014) Comparison of effects on voice of diode laser and cold knife microlaryngology techniques for vocal fold polyps. J Voice 28:387–392

    Article  PubMed  Google Scholar 

  11. 11.

    Cömert E, Tunçel Ü, Dizman A, Güney YY (2014) Comparison of early oncological results of diode laser surgery with radiotherapy for early glottic carcinoma. Otolaryngol Head Neck Surg 150:818–823

    Article  PubMed  Google Scholar 

  12. 12.

    Karkos PD, Stavrakas M, Markou K (2016) Early glottic cancer and difficult laryngoscopy: flexible endoscopic diode laryngeal laser-assisted surgery—a pilot study of an oncologically safe tool. Clin Otolaryngol 41:830

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Pedregal-Mallo D, Sánchez Canteli M, López F, Álvarez-Marcos C, Llorente JL, Rodrigo JP (2018) Oncological and functional outcomes of transoral laser surgery for laryngeal carcinoma. Eur Arch Otorhinolaryngol 275:2071–2077

    Article  PubMed  Google Scholar 

  14. 14.

    Arroyo HH, Neri L, Fussuma CY, Imamura R (2016) Diode laser for laryngeal surgery: a systematic review. Int Arch Otorhinolaryngol 20:172–179

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Mau T, Du M, Xu CC (2014) A rabbit vocal fold laser scarring model for testing lamina propria tissue-engineering therapies. Laryngoscope 124:2321–2326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Divi V, Benninger M, Kiupel M, Dobbie A (2012) Coblation of the canine vocal fold: a histologic study. J Voice 26:9–13

    Article  Google Scholar 

  17. 17.

    Mitchell JR, Kojima T, Wu H, Garrett CG, Rousseau B (2014) Biochemical basis of vocal fold mobilization after microflap surgery in a rabbit model. Laryngoscope 124:487–493

    Article  PubMed  Google Scholar 

  18. 18.

    Benninger MS, Alessi D, Archer S, Bastian R, Ford C, Koufman J et al (1996) Vocal fold scarring: current concepts and management. Otolaryngol Head Neck Surg 15:474–482

    Google Scholar 

  19. 19.

    Woo P, Casper J, Colton R, Brewer D (1994) Diagnosis and treatment of persistent dysphonia after laryngeal surgery: a retrospective analysis of 62 patients. Laryngoscope 104:1084–1091

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Mortensen MM, Woo P, Ivey C, Thompson C, Carroll L, Altman K (2008) The use of the pulse dye laser in the treatment of vocal fold scar: a preliminary study. Laryngoscope 118:1884–1888

    Article  PubMed  Google Scholar 

  21. 21.

    Newman J, Anand V (2002) Applications of the diode laser in otolaryngology. Ear Nose Throat J 81:850–851

    Article  Google Scholar 

  22. 22.

    D’Arcangelo C, Di Maio FDN, Prosperi GD, Conte E, Baldi M, Caputi S (2007) A preliminary study of healing of diode laser versus scalpel incisions in rat oral tissue: a comparison of clinical, histological, and immunohistochemical results. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 103:764–773

    Article  PubMed  Google Scholar 

  23. 23.

    Bryant GL, Davidson JM, Ossoff RH, Garrett CG, Reinisch L (1998) Histologic study of oral mucosa wound healing: a comparison of a 6.0- to 6.8-micrometer pulsed laser and a carbon dioxide laser. Laryngoscope 108:13–17

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Zhang Y, Cao L, Chen Q, Chen X, Xu W, Fang Q et al (2011) Experimental study on different power CO2 laser for vocal cord injury. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 46:1039–1041

    PubMed  Google Scholar 

  25. 25.

    Benninger MS (2000) Microdissection or microspot CO2 laser for limited vocal fold benign lesions: a prospective randomized trial. Laryngoscope 11:1–17

    Article  Google Scholar 

  26. 26.

    Anderson RR, Parrish JA (1983) Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science 220:524–527

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Dhar P, Malik A (2011) Anesthesia for laser surgery in ENT and the various ventilatory techniques. Trends Anaesth Crit Care 1:60–66

    Article  Google Scholar 

  28. 28.

    Garrett CG, Reinisch L (2002) New-generation pulsed carbon dioxide laser: comparative effects on vocal fold wound healing. Ann Otol Rhinol Laryngol 111:471–476

    Article  PubMed  Google Scholar 

  29. 29.

    Fortune DS, Huang S, Soto J, Pennington B, Ossoff RH, Reinisch L (1998) Effect of pulse duration on wound healing using a CO2 laser. Laryngoscope 108:843–848

    Article  CAS  PubMed  Google Scholar 

  30. 30.

    Friedrich G, Dikkers FG, Arens C, Remacle M, Hess M, Giovanni A et al (2013) Vocal fold scars: current concepts and future directions. Consensus report of the Phonosurgery Committee of the European Laryngological Society. Eur Arch Otorhinolaryngol 270:2491–2507

    Article  CAS  PubMed  Google Scholar 

  31. 31.

    Hendriksma M, Montagne MW, Langeveld TPM, Veselic M, van Benthem PPG, Sjögren EV (2018) Evaluation of surgical margin status in patients with early glottic cancer (Tis-T2) treated with transoral CO2 laser microsurgery, on local control. Eur Arch Otorhinolaryngol 275:2333–2340

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Gray SD, Titze IR, Alipour F, Hammond TH (2000) Biomechanical and histologic observations of vocal fold fibrous proteins. Ann Otol Rhinol Laryngol 109:77–85

    Article  CAS  PubMed  Google Scholar 

  33. 33.

    Thibeault SL, Gray SD, Bless DM, Chan RW, Ford CN (2002) Histologic and rheologic characterization of vocal fold scarring. J Voice 16:96–104

    Article  PubMed  Google Scholar 

  34. 34.

    Tateya T, Tateya I, Sohn JH, Bless DM (2006) Histological study of acute vocal fold injury in a rat model. Ann Otol Rhinol Laryngol 115:285–292

    Article  PubMed  Google Scholar 

  35. 35.

    Branski RC, Rosen CA, Verdolini K, Hebda PA (2005) Acute vocal fold wound healing in a rabbit model. Ann Otol Rhinol Laryngol 114:19–24

    Article  PubMed  Google Scholar 

  36. 36.

    Ling C, Yamashita M, Waselchuk EA, Raasch JL, Bless DM, Welham NV (2010) Alteration in cellular morphology, density and distribution in rat vocal fold mucosa following injury. Wound Repair Regen 18:89–97

    Article  PubMed  Google Scholar 

  37. 37.

    Yamashita M, Bless DM, Welham NV (2009) Surgical method to create vocal fold injuries in mice. Ann Otol Rhinol Laryngol 118:131–138

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Campagnolo AM, Tsuji DH, Sennes LU, Imamura R, Saldiva PH (2010) Histologic study of acute vocal fold wound healing after corticosteroid injection in a rabbit model. Ann Otol Rhinol Laryngol 119:133–139

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Sao Paulo Research Foundation (FAPESP) for its financial support and Luciana Almeida Lopes for helping to choose the laser settings. We also thank the Research and Education Center for Phototherapy in Health Sciences (NUPEN) for the laser equipment and technical support.

Funding

This study was funded by FAPESP (Fundação de Amparo à Pesquisa de São Paulo—Grant number 2015/25095-0).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Helena Hotz Arroyo-Ramos.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Ethical approval

The study was approved by the Ethics Committee for the Analysis of Research Projects of the University of Sao Paulo School of Medicine (research protocol no. 177/13). All applicable international, national, and institutional guidelines for the care and use of animals were followed.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arroyo-Ramos, H.H., Neri, L., Mancini, M.W. et al. Effects of diode laser setting for laryngeal surgery in a rabbit model. Eur Arch Otorhinolaryngol 276, 1431–1438 (2019). https://doi.org/10.1007/s00405-019-05344-5

Download citation

Keywords

  • Larynx
  • Vocal fold
  • Laser injury
  • Wound healing
  • Diode laser
  • Endolaryngeal surgery