Skip to main content
Log in

Is there any effect of montelukast on prevention of myringosclerosis after myringotomy in a rat model?

  • Otology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Objectives

In this study, our aim was to identify the possible effects of montelukast sodium (ML) on the prevention of experimentally induced myringosclerosis.

Materials and methods

Twenty-eight female Wistar albino rats were used and they were divided into four groups randomly. Tympanic membranes (TM) of all animals were perforated and then group 1 received no treatment (control group), group 2 was treated with a topical saline solution, group 3 received topically ML and group 4 received orally ML. On the 15th day, all animals were euthanized. Tympanic membranes were evaluated otomicroscopically and histopathologically.

Results

The histopathological findings, compared against a control and saline groups, showed the topically and orally ML groups had statistically significant differences of degree of myringosclerosis (p < 0.002) and median thickness of the TMs (p < 0.001). Suppression of inflammation was statistically significant only in the oral ML treatment group (p < 0.002).

Conclusion

Oral and topically administration of ML reduced myringosclerosis formation in myringotomies rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ayata M, Kaptan Z, Uzunkulaoglu H, Akyıldız I, Tüzüner A, Ünverdi H, Karadas H (2015) Effect of enoxaparin sodium on experimentally-induced myringosclerosis in rats. J Int Adv Otol 11:192–195

    Article  PubMed  Google Scholar 

  2. Mattsson C, Magnuson K, Hellström S (1995) Myringosclerosis caused by increased oxygen concentration in traumatized tympanic membranes. Experimental study. Ann Otol Rhinol Laryngol 104:625–632

    Article  CAS  PubMed  Google Scholar 

  3. Song JJ, Kwon SK, Cho CG, Park SW (2007) The effect of caffeic acid phenethyl ester on the prevention of experimentally induced myringosclerosis ester on the prevention of experimentally induced myringosclerosis. Int J Pediatr Otorhinolaryngol 71:1287–1291

    Article  PubMed  Google Scholar 

  4. Kazikdas KC, Uguz MZ, Erbil G, Tugyan K, Yilmaz O, Guneli E, Altun Z (2006) The anti-oxidant effect of alpha-tocopherol in the prevention of experimentally induced myringosclerosis. Otol Neurotol 27:882–886

    Article  PubMed  Google Scholar 

  5. Görür K, Ozcan C, Polat A, Unal M, Tamer L, Cinel I (2002) The anti-oxidant and anti-apoptotic activities of selenium in the prevention of myringosclerosis in rats. J Laryngol Otol 116:426–429

    Article  PubMed  Google Scholar 

  6. Tos M, Stangerup SE, Larsen P (1987) Dynamics of eardrum changes following secretory otitis: a prospective study. Arch Otolaryngol Head Neck Surg 113:380–385

    Article  CAS  PubMed  Google Scholar 

  7. Möller P (1984) Tympanosclerosis of the ear drum. A scanning electron microscopic study. Acta Otolaryngol 91(Suppl 414):171–177

    Article  Google Scholar 

  8. Parker AJ, Maw AR, Powell JE (1990) Intra-tympanic membrane bleeding after grommet insertion and tympanosclerosis. Clin Otolaryngol Allied Sci 15:203–207

    Article  CAS  PubMed  Google Scholar 

  9. Zielnik-Jurkiewicz B, Olszewska-Sosińska O, Rakowska M (2006) Results of treatment with tympanostomy tubes in children with otitis media with effusion. Otolaryngol Pol 60:181–185

    PubMed  Google Scholar 

  10. Slack RW, Maw AR, Capper JW, Kelly S (1984) Prospective study of tympanosclerosis developing after grommet insertion. J Laryngol Otol 98:771–774

    Article  CAS  PubMed  Google Scholar 

  11. Yaman H, Yilmaz S, Alkan N, Subasi B, Guclu E, Ozturk O (2010) Shepard grommet tympanostomy tube complications in children with chronic otitis media with effusion. Eur Arch Otorhinolaryngol 267:1221–1224

    Article  PubMed  Google Scholar 

  12. Kay DJ, Nelson M, Rosenfeld RM (2001) Meta-analysis of tympanostomy tube sequelae. Otolaryngol Head Neck Surg 124:374–380

    Article  CAS  PubMed  Google Scholar 

  13. Asiri S, Hahsam A, Anazy FA, Zakzouk S, Banjar A (1999) Tympanosclerosis: review of literature and incidence among patients with middle-ear infection. J Laryngol Otol 113:1076–1080

    Article  CAS  PubMed  Google Scholar 

  14. Mattsson C, Marklund SL, Hellström S (1997) Application of oxygen free radical scavengers to diminish the occurrence of myringosclerosis. Ann Otol Rhinol Laryngol 106:513–518

    Article  CAS  PubMed  Google Scholar 

  15. Schiff M, Yoo TJ (1985) Immunologic aspects of otologic disease: an overview. Laryngoscope 95:259–269

    Article  CAS  PubMed  Google Scholar 

  16. Polat S, Ozturk O, Uneri C, Yuksel M, Haklar G, Bozkurt S, Küllü S (2004) Determination of reactive oxygen species in myringotomized tympanic membranes: effect of vitamin e treatment. Laryngoscope 114:720–725

    Article  CAS  PubMed  Google Scholar 

  17. Mattsson C, Stierna P, Hellström S (2000) Treatment with dexamethasone arrests the development of myringosclerosis after myringotomy. Am J Otol 21:804–808

    CAS  PubMed  Google Scholar 

  18. Ozcan C, Gorur K, Cinel L, Talas DU, Unal M, Cinel I (2002) The inhibitory effect of topical N-acetylcysteine application on myringosclerosis in perforated rat tympanic membrane. Int J Pediatr Otorhinolaryngol 63:179–184

    Article  PubMed  Google Scholar 

  19. Spratley JE, Hellstrom SO, Mattsson CK, Pais-Clemente M (2001) Topical ascorbic acid reduces myringosclerosis in perforated tympanic membranes a study in the rat. Ann Otol Rhinol Laryngol 110:585–591

    Article  CAS  PubMed  Google Scholar 

  20. Anderson R, Theron AJ, Gravett CM, Steel HC, Tintinger GR, Feldman C (2009) Montelukast inhibits neutrophil pro-inflammatory activity by a cyclic AMP-dependent mechanism. Br J Pharmacol 156:105–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Beytur A, Ciftci O, Oguz F, Oguzturk H, Yilmaz H (2012) Montelukast attenuates side effects of cisplatin including testicular, spermatological, and hormonal damage in male rats. Cancer Chemother Pharmacol 69:207–213

    Article  CAS  PubMed  Google Scholar 

  22. Ozkan E, Yardimci S, Dulundu E, Topaloğlu U, Sehirli O, Ercan F, Velioğlu-Oğünç A, Sener G (2010) Protective potential of montelukast against hepatic ischemia/reperfusion injury in rats. J Surg Res 159:588–594

    Article  CAS  PubMed  Google Scholar 

  23. Holma R, Salmenpera P, Virtanen I, Vapaatalo H, Korpela R (2007) Prophylactic potential of montelukast against mild colitis induced by dextran sulphate sodium in rats. J Physiol Pharmacol 58:455–467

    CAS  PubMed  Google Scholar 

  24. Kose E, Sapmaz HI, Sarihan E, Vardi N, Turkoz Y, Ekinci N (2012) Beneficial effects of montelukast against methotrexate-induced liver toxicity: a biochemical and histological study. Sci World J 2012:1–6

    Article  CAS  Google Scholar 

  25. Hele DJ, Birrell MA, Webber SE, Foster ML, Belvisi MG (2001) Mediator involvement in antigen-induced bronchospasm and microvascular leakage in the airways of ovalbumin sensitized Brown Norway rats. Br J Pharmacol 132:481–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. İçer M, Zengin Y, Gunduz E, Dursun R, Durgun HM, Turkcu G, Yuksel H, Üstündağ M, Guloglu C (2016) Is montelukast as effective as N-acetylcysteine in hepatic injury due to acetaminophen intoxication in rats? Exp Toxicol Pathol 68:55–59

    Article  CAS  PubMed  Google Scholar 

  27. Akbaş Y, Pata YS, Görür K, Polat G, Polat A, Ozcan C, Unal M (2003) The effect of l-carnitine on the prevention of experimentally induced myringosclerosis in rats. Hear Res 184:107–112

    Article  CAS  PubMed  Google Scholar 

  28. Emir H, Kaptan ZK, Samim E, Sungu N, Ceylan K, Ustun H (2009) The preventive effect of ginkgo biloba extract in myringosclerosis: study in rats. Otolaryngol Head Neck Surg 140:171–176

    Article  PubMed  Google Scholar 

  29. Capra V, Thompson MD, Sala A, Cole DE, Folco G, Rovati GE (2007) Cysteinyl-leukotrienes and their receptors in asthma and other inflammatory diseases: critical update and emerging trends. Med Res Rev 27:469–527

    Article  CAS  PubMed  Google Scholar 

  30. Henderson WR Jr (1994) Role of leukotrienes in asthma. Ann Allergy 72:272–278

    PubMed  Google Scholar 

  31. Schoem SR, Willard A, Combs JT (2010) A prospective, randomized, placebo-controlled, double-blind study of montelukast’s effect on persistent middle ear effusion. Ear Nose Throat J 89:434–437

    PubMed  Google Scholar 

  32. Aynali G, Yariktaş M, Yasan H, Karahan N, Başpinar S, Tüz M, Gümüş S (2011) The effects of methylprednisolone, montelukast and indomethacin in experimental otitis media with effusion. Int J Pediatr Otorhinolaryngol 75:15–19

    Article  PubMed  Google Scholar 

  33. Kabasakal I, Sener G, Cetinel S, Contuk G, Gedik GN, Yegen BC (2005) Burn-induced oxidative injury of the gut is ameliorated by the leukotriene receptor blocker montelukast. Prostaglandins Leukot Essent Fat Acids 72:431–440

    Article  CAS  Google Scholar 

  34. Hemmati AA, Ghorbanzadeh B, Behmanesh MA (2013) Potentiation of indomethacin-induced anti-inflammatory response by montelukast in formalin-induced inflammation in rats. Acta Med Iran 51:675–680

    PubMed  Google Scholar 

  35. Ozkan E, Akyuz C, Şehirli AO, Topaloğlu U, Ercan F, Sener G (2010) Montelukast, a selective cysteinyl leukotriene receptor 1 antagonist, reduces cerulein-induced pancreatic injury in rats. Pancreas 39:1041–1046

    Article  CAS  PubMed  Google Scholar 

  36. Peng J, Zhou H, Kuang G, Xie L, Tian T, Liu R (2017) The selective cysteinyl leukotriene receptor 1 (CysLT1R) antagonist montelukast regulates extracellular matrix remodeling. Biochem Biophys Res Commun 484:474–479

    Article  CAS  PubMed  Google Scholar 

  37. Santos PF, Leal MC, Peixoto C, Neto SC, Rosas ST (2005) Otomicroscopic and histologic findings of induced myringosclerosis in rats: a critical study of an experimental model. Braz J Otorhinolaryngol 71:668–674

    Article  PubMed  Google Scholar 

  38. Sener G, Sakarcan A, Sehirli O, Ekşioğlu-Demiralp E, Sener E, Ercan F, Gedik N, Yeğen BC (2007) Chronic renal failure-induced multiple-organ injury in rats is alleviated by the selective CysLT1 receptor antagonist montelukast. Prostaglandins Other Lipid Mediat 83:257–267

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Gülin Gökçe Kesici (Yıldırım Beyazıt University, Atatürk Education and Research Hospital, Otolaryngology Clinic, Ankara, Turkey) for statistical analysis of data for her help during the experiment.

Funding

There is no financing in this study.

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

There is no conflict of interest in this study.

Ethical approval

The experimental study complied with experimental ethical principles and animal protection laws according to the rules and regulations in Turkey, approved by the Local Ethics Committee in Ankara, Turkey (Prot. no: 01/03/2018-0045). This study was conducted in compliance with the guidelines for animal experimentation at the Department of Laboratory Animal Science of Medical School.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kargin Kaytez, S., Kavuzlu, A., Yumusak, N. et al. Is there any effect of montelukast on prevention of myringosclerosis after myringotomy in a rat model?. Eur Arch Otorhinolaryngol 276, 57–62 (2019). https://doi.org/10.1007/s00405-018-5181-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-018-5181-3

Keywords

Navigation