Advertisement

European Archives of Oto-Rhino-Laryngology

, Volume 275, Issue 6, pp 1375–1384 | Cite as

Molecular markers in well-differentiated thyroid cancer

  • Anil K. D’Cruz
  • Richa Vaish
  • Abhishek Vaidya
  • Iain J. Nixon
  • Michelle D. Williams
  • Vincent Vander Poorten
  • Fernando López
  • Peter Angelos
  • Ashok R. Shaha
  • Avi Khafif
  • Alena Skalova
  • Alessandra Rinaldo
  • Jennifer L. Hunt
  • Alfio Ferlito
Review Article

Abstract

Purpose

Thyroid nodules are of common occurrence in the general population. About a fourth of these nodules are indeterminate on aspiration cytology placing many a patient at risk of unwanted surgery. The purpose of this review is to discuss various molecular markers described to date and place their role in proper perspective. This review covers the fundamental role of the signaling pathways and genetic changes involved in thyroid carcinogenesis. The current literature on the prognostic significance of these markers is also described.

Methods

PubMed was used to search relevant articles. The key terms “thyroid nodules”, “thyroid cancer papillary”, “carcinoma papillary follicular”, “carcinoma papillary”, “adenocarcinoma follicular” were searched in MeSH, and “molecular markers”, “molecular testing”, mutation, BRAF, RAS, RET/PTC, PAX 8, miRNA, NIFTP in title and abstract fields. Multiple combinations were done and a group of experts in the subject from the International Head and Neck Scientific Group extracted the relevant articles and formulated the review.

Results

There has been considerable progress in the understanding of thyroid carcinogenesis and the emergence of numerous molecular markers in the recent years with potential to be used in the diagnostic algorithm of these nodules. However, their precise role in routine clinical practice continues to be a contentious issue. Majority of the studies in this context are retrospective and impact of these mutations is not independent of other prognostic factors making the interpretation difficult.

Conclusion

The prevalence of these mutations in thyroid nodule is high and it is a continuously evolving field. Clinicians should stay informed as recommendation on the use of these markers is expected to evolve.

Keywords

Thyroid neoplasm/diagnosis Thyroid neoplasm/genetics Carcinoma, papillary Adenocarcinoma, follicular NIFTP miRNA 

Notes

Funding

None.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no competing interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Ezzat S, Sarti DA, Cain DR, Braunstein GD (1994) Thyroid incidentalomas. Prevalence by palpation and ultrasonography. Arch Intern Med 154(16):1838–1840CrossRefPubMedGoogle Scholar
  2. 2.
    Vaccarella S, Franceschi S, Bray F, Wild CP, Plummer M, Dal Maso L (2016) Worldwide thyroid-cancer epidemic? The increasing impact of overdiagnosis. N Engl J Med 375(7):614–617CrossRefPubMedGoogle Scholar
  3. 3.
    Haugen BR, Alexander EK, Bible KC et al (2016) 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 26(1):1–133CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Wang C-CC, Friedman L, Kennedy GC et al (2011) A large multicenter correlation study of thyroid nodule cytopathology and histopathology. Thyroid 21(3):243–251CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Nayar R, Ivanovic M (2009) The indeterminate thyroid fine-needle aspiration: experience from an academic center using terminology similar to that proposed in the 2007 National Cancer Institute Thyroid Fine Needle Aspiration State of the Science Conference. Cancer 117(3):195–202Google Scholar
  6. 6.
    Francis GL, Waguespack SG, Bauer AJ et al (2015) Management guidelines for children with thyroid nodules and differentiated thyroid cancer. Thyroid 25(7):716–759CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Cancer Genome Atlas Research N (2014) Integrated genomic characterization of papillary thyroid carcinoma. Cell 159(3):676–690CrossRefGoogle Scholar
  8. 8.
    Cohen Y, Xing M, Mambo E et al (2003) BRAF mutation in papillary thyroid carcinoma. J Natl Cancer Inst 95(8):625–627CrossRefPubMedGoogle Scholar
  9. 9.
    Xing M (2013) Molecular pathogenesis and mechanisms of thyroid cancer. Nat Rev Cancer 13(3):184–199CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Rabes HM, Demidchik EP, Sidorow JD et al (2000) Pattern of radiation-induced RET and NTRK1 rearrangements in 191 post-chernobyl papillary thyroid carcinomas: biological, phenotypic, and clinical implications. Clin Cancer Res 6(3):1093–1103PubMedGoogle Scholar
  11. 11.
    Tallini G, Asa SL (2001) RET oncogene activation in papillary thyroid carcinoma. Adv Anat Pathol 8(6):345–354CrossRefPubMedGoogle Scholar
  12. 12.
    Mehta V, Nikiforov YE, Ferris RL (2013) Use of molecular biomarkers in FNA specimens to personalize treatment for thyroid surgery. Head Neck 35(10):1499–1506PubMedGoogle Scholar
  13. 13.
    Vander Poorten V, Hens G, Delaere P (2013) Thyroid cancer in children and adolescents. Curr Opin Otolaryngol Head Neck Surg 21(2):135–142CrossRefPubMedGoogle Scholar
  14. 14.
    Thomas GA, Bunnell H, Cook HA et al (1999) High prevalence of RET/PTC rearrangements in Ukrainian and Belarussian post-Chernobyl thyroid papillary carcinomas: a strong correlation between RET/PTC3 and the solid-follicular variant. J Clin Endocrinol Metab 84(11):4232–4238PubMedGoogle Scholar
  15. 15.
    Adeniran AJ, Zhu Z, Gandhi M et al (2006) Correlation between genetic alterations and microscopic features, clinical manifestations, and prognostic characteristics of thyroid papillary carcinomas. Am J Surg Pathol 30(2):216–222CrossRefPubMedGoogle Scholar
  16. 16.
    Croyle M, Akeno N, Knauf JA et al (2008) RET/PTC-induced cell growth is mediated in part by epidermal growth factor receptor (EGFR) activation: evidence for molecular and functional interactions between RET and EGFR. Cancer Res 68(11):4183–4191CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kroll TG, Sarraf P, Pecciarini L et al (2000) PAX8-PPARgamma1 fusion oncogene in human thyroid carcinoma [corrected]. Science 289(5483):1357–1360CrossRefPubMedGoogle Scholar
  18. 18.
    Dwight T, Thoppe SR, Foukakis T et al (2003) Involvement of the PAX8/peroxisome proliferator-activated receptor gamma rearrangement in follicular thyroid tumors. J Clin Endocrinol Metab 88(9):4440–4445CrossRefPubMedGoogle Scholar
  19. 19.
    Castro P, Rebocho AP, Soares RJ et al (2006) PAX8-PPARgamma rearrangement is frequently detected in the follicular variant of papillary thyroid carcinoma. J Clin Endocrinol Metab 91(1):213–220CrossRefPubMedGoogle Scholar
  20. 20.
    Nikiforov YE (2011) Molecular diagnostics of thyroid tumors. Arch Pathol Lab Med 135(5):569–577PubMedGoogle Scholar
  21. 21.
    Liu X, Bishop J, Shan Y et al (2013) Highly prevalent TERT promoter mutations in aggressive thyroid cancers. Endocr Relat Cancer 20(4):603–610CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Acquaviva G, Visani M, Repaci A et al (2018) Molecular pathology of thyroid tumours of follicular cells: a review of genetic alterations and their clinicopathological relevance. Histopathology 72(1):6–31CrossRefPubMedGoogle Scholar
  23. 23.
    Li X, Abdel-Mageed AB, Mondal D, Kandil E (2013) MicroRNA expression profiles in differentiated thyroid cancer, a review. Int J Clin Exp Med 6(1):74–80PubMedGoogle Scholar
  24. 24.
    Pallante P, Visone R, Ferracin M et al (2006) MicroRNA deregulation in human thyroid papillary carcinomas. Endocr Relat Cancer 13(2):497–508CrossRefPubMedGoogle Scholar
  25. 25.
    Nikiforova MN, Tseng GC, Steward D, Diorio D, Nikiforov YE (2008) MicroRNA expression profiling of thyroid tumors: biological significance and diagnostic utility. J Clin Endocrinol Metab 93(5):1600–1608CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Cibas ES, Ali SZ, Conference NCITFSotS (2009) The Bethesda system for reporting thyroid cytopathology. Am J Clin Pathol 132(5):658–665CrossRefGoogle Scholar
  27. 27.
    Steward DL, Kloos RT (2014) Clinical diagnostic gene expression thyroid testing. Otolaryngol Clin North Am 47(4):573–593CrossRefPubMedGoogle Scholar
  28. 28.
    Nikiforov YE, Seethala RR, Tallini G et al (2016) Nomenclature revision for encapsulated follicular variant of papillary thyroid carcinoma: a paradigm shift to reduce overtreatment of indolent tumors. JAMA Onco l2(8):1023–1029CrossRefGoogle Scholar
  29. 29.
    Baloch ZW, Seethala RR, Faquin WC et al (2016) Noninvasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP): a changing paradigm in thyroid surgical pathology and implications for thyroid cytopathology. Cancer Cytopathol 124(9):616–620CrossRefPubMedGoogle Scholar
  30. 30.
    Zhao L, Dias-Santagata D, Sadow PM, Faquin WC (2017) Cytological, molecular, and clinical features of noninvasive follicular thyroid neoplasm with papillary-like nuclear features versus invasive forms of follicular variant of papillary thyroid carcinoma. Cancer Cytopathol 125(5):323–331CrossRefPubMedGoogle Scholar
  31. 31.
    Maletta F, Massa F, Torregrossa L et al (2016) Cytological features of “noninvasive follicular thyroid neoplasm with papillary-like nuclear features” and their correlation with tumor histology. Hum Pathol 54:134–142CrossRefPubMedGoogle Scholar
  32. 32.
    Cibas ES, Ali SZ (2017) The 2017 Bethesda system for reporting thyroid cytopathology. Thyroid 27(11):1341–1346CrossRefPubMedGoogle Scholar
  33. 33.
    Nikiforova MN, Nikiforov YE (2009) Molecular diagnostics and predictors in thyroid cancer. Thyroid 19(12):1351–1361CrossRefPubMedGoogle Scholar
  34. 34.
    Nikiforov YE (2017) Role of molecular markers in thyroid nodule management: then and now. Endocr Pract 23(8):979–988CrossRefPubMedGoogle Scholar
  35. 35.
    Nikiforov YE, Ohori NP, Hodak SP et al (2011) Impact of mutational testing on the diagnosis and management of patients with cytologically indeterminate thyroid nodules: a prospective analysis of 1056 FNA samples. J Clin Endocrinol Metab 96(11):3390–3397CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Yip L, Ferris RL (2014) Clinical application of molecular testing of fine-needle aspiration specimens in thyroid nodules. Otolaryngol Clin North Am 47(4):557–571CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Esapa CT, Johnson SJ, Kendall-Taylor P, Lennard TW, Harris PE (1999) Prevalence of Ras mutations in thyroid neoplasia. Clin Endocrinol (Oxf) 50(4):529–535CrossRefGoogle Scholar
  38. 38.
    Zhu Z, Gandhi M, Nikiforova MN, Fischer AH, Nikiforov YE (2003) Molecular profile and clinical-pathologic features of the follicular variant of papillary thyroid carcinoma. An unusually high prevalence of ras mutations. Am J Clin Pathol 120(1):71–77CrossRefPubMedGoogle Scholar
  39. 39.
    Gupta N, Dasyam AK, Carty SE et al (2013) RAS mutations in thyroid FNA specimens are highly predictive of predominantly low-risk follicular-pattern cancers. J Clin Endocrinol Metab 98(5):E914-22CrossRefPubMedGoogle Scholar
  40. 40.
    Paulson VA, Shivdasani P, Angell TE et al (2017) Noninvasive follicular thyroid neoplasm with papillary-like nuclear features accounts for more than half of “carcinomas” harboring RAS mutations. Thyroid 27(4):506–511CrossRefPubMedGoogle Scholar
  41. 41.
    Wong KS, Angell TE, Strickland KC et al (2016) Noninvasive follicular variant of papillary thyroid carcinoma and the Afirma gene-expression classifier. Thyroid 26(7):911–915CrossRefPubMedGoogle Scholar
  42. 42.
    Zhu Z, Ciampi R, Nikiforova MN, Gandhi M, Nikiforov YE (2006) Prevalence of RET/PTC rearrangements in thyroid papillary carcinomas: effects of the detection methods and genetic heterogeneity. J Clin Endocrinol Metab 91(9):3603–3610CrossRefPubMedGoogle Scholar
  43. 43.
    Fenton CL, Lukes Y, Nicholson D, Dinauer CA, Francis GL, Tuttle RM (2000) The ret/PTC mutations are common in sporadic papillary thyroid carcinoma of children and young adults. J Clin Endocrinol Metab 85(3):1170–1175PubMedGoogle Scholar
  44. 44.
    Cheung CC, Carydis B, Ezzat S, Bedard YC, Asa SL (2001) Analysis of ret/PTC gene rearrangements refines the fine needle aspiration diagnosis of thyroid cancer. J Clin Endocrinol Metab 86(5):2187–2190CrossRefPubMedGoogle Scholar
  45. 45.
    Elisei R, Romei C, Vorontsova T et al (2001) RET/PTC rearrangements in thyroid nodules: studies in irradiated and not irradiated, malignant and benign thyroid lesions in children and adults. J Clin Endocrinol Metab 86(7):3211–3216PubMedGoogle Scholar
  46. 46.
    Alexander EK, Kennedy GC, Baloch ZW et al (2012) Preoperative diagnosis of benign thyroid nodules with indeterminate cytology. N Engl J Med 367(8):705–715CrossRefPubMedGoogle Scholar
  47. 47.
    Zhang M, Lin O (2016) Molecular testing of thyroid nodules: a review of current available tests for fine-needle aspiration specimens. Arch Pathol Lab Med 140(12):1338–1344CrossRefPubMedGoogle Scholar
  48. 48.
    Giordano TJ, Beaudenon-Huibregtse S, Shinde R et al (2014) Molecular testing for oncogenic gene mutations in thyroid lesions: a case-control validation study in 413 postsurgical specimens. Hum Pathol 45(7):1339–1347CrossRefPubMedGoogle Scholar
  49. 49.
    Labourier E, Shifrin A, Busseniers AE et al (2015) Molecular testing for miRNA, mRNA, and DNA on fine-needle aspiration improves the preoperative diagnosis of thyroid nodules with indeterminate cytology. J Clin Endocrinol Metab 100(7):2743–2750CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Nikiforova MN, Wald AI, Roy S, Durso MB, Nikiforov YE (2013) Targeted next generation sequencing panel (ThyroSeq) for detection of mutations in thyroid cancer. J Clin Endocrinol Metab 98(11):E1852–E1860CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Nikiforov YE, Carty SE, Chiosea SI et al (2014) Highly accurate diagnosis of cancer in thyroid nodules with follicular neoplasm/suspicious for a follicular neoplasm cytology by ThyroSeq v2 next-generation sequencing assay. Cancer 120(23):3627–3634CrossRefPubMedGoogle Scholar
  52. 52.
    Nikiforova MN, Mercurio S, Wald AI et al (2018) Analytical performance of the ThyroSeq v3 genomic classifier for cancer diagnosis in thyroid nodules. Cancer.  https://doi.org/10.1002/cncr.31245 PubMedCrossRefGoogle Scholar
  53. 53.
    Benjamin H, Schnitzer-Perlman T, Shtabsky A et al (2016) Analytical validity of a microRNA-based assay for diagnosing indeterminate thyroid FNA smears from routinely prepared cytology slides. Cancer Cytopathol 124(10):711–721CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Lithwick-Yanai G, Dromi N, Shtabsky A et al (2017) Multicentre validation of a microRNA-based assay for diagnosing indeterminate thyroid nodules utilising fine needle aspirate smears. J Clin Pathol 70(6):500–507CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Lee J-H, Lee E-S, Kim Y-S (2007) Clinicopathologic significance of BRAF V600E mutation in papillary carcinomas of the thyroid: a meta-analysis. Cancer 110(1):38–46CrossRefPubMedGoogle Scholar
  56. 56.
    Kim TH, Park YJ, Lim JA et al (2012) The association of the BRAF (V600E) mutation with prognostic factors and poor clinical outcome in papillary thyroid cancer: a meta-analysis. Cancer 118(7):1764–1773CrossRefPubMedGoogle Scholar
  57. 57.
    Vuong HG, Duong UNP, Altibi AMAet al (2017) A meta-analysis of prognostic roles of molecular markers in papillary thyroid carcinoma. Endocr Connect 6(3):R8–R17CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Kebebew E, Weng J, Bauer J et al (2007) The prevalence and prognostic value of BRAF mutation in thyroid cancer. Ann Surg 246(3):466–470CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Song YS, Lim JA, Park YJ (2015) Mutation profile of well-differentiated thyroid cancer in Asians. Endocrinology Metabolism 30(3):252–262CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Lupi C, Giannini R, Ugolini C et al (2007) Association of BRAF V600E mutation with poor clinicopathological outcomes in 500 consecutive cases of papillary thyroid carcinoma. J Clin Endocrinol Metab 92(11):4085–4090CrossRefPubMedGoogle Scholar
  61. 61.
    Xing M, Westra WH, Tufano RP et al (2005) BRAF mutation predicts a poorer clinical prognosis for papillary thyroid cancer. J Clin Endocrinol Metab 90(12):6373–6379CrossRefPubMedGoogle Scholar
  62. 62.
    Howell GM, Nikiforova MN, Carty SE et al (2013) BRAF V600E mutation independently predicts central compartment lymph node metastasis in patients with papillary thyroid cancer. Ann Surg Oncol 20(1):47–52CrossRefPubMedGoogle Scholar
  63. 63.
    Xing M, Alzahrani AS, Carson KA et al (2013) Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer. JAMA 309(14):1493–1501CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Park YJ, Kim YA, Lee YJ et al (2010) Papillary microcarcinoma in comparison with larger papillary thyroid carcinoma in BRAF (V600E) mutation, clinicopathological features, and immunohistochemical findings. Head Neck 32(1):38–45PubMedGoogle Scholar
  65. 65.
    Lee X, Gao M, Ji Y et al (2009) Analysis of differential BRAF(V600E) mutational status in high aggressive papillary thyroid microcarcinoma. Ann Surg Oncol 16(2):240–245CrossRefPubMedGoogle Scholar
  66. 66.
    Lin K-L, Wang O-C, Zhang X-H, Dai X-X, Hu X-Q, Qu J-M (2010) The BRAF mutation is predictive of aggressive clinicopathological characteristics in papillary thyroid microcarcinoma. Ann Surg Oncol 17(12):3294–3300CrossRefPubMedGoogle Scholar
  67. 67.
    Li F, Chen G, Sheng C et al (2015) BRAFV600E mutation in papillary thyroid microcarcinoma: a meta-analysis. Endocr Relat Cancer 22(2):159–168CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Elisei R, Viola D, Torregrossa L et al (2012) The BRAF(V600E) mutation is an independent, poor prognostic factor for the outcome of patients with low-risk intrathyroid papillary thyroid carcinoma: single-institution results from a large cohort study. J Clin Endocrinol Metab 97(12):4390–4398CrossRefPubMedGoogle Scholar
  69. 69.
    Xing M, Alzahrani AS, Carson KA et al (2015) Association between BRAF V600E mutation and recurrence of papillary thyroid cancer. J Clin Oncol 33(1):42–50CrossRefPubMedGoogle Scholar
  70. 70.
    Elisei R, Ugolini C, Viola D et al (2008) BRAF(V600E) mutation and outcome of patients with papillary thyroid carcinoma: a 15-year median follow-up study. J Clin Endocrinol Metab 93(10):3943–3949CrossRefPubMedGoogle Scholar
  71. 71.
    Henke LE, Pfeifer JD, Ma C et al (2015) BRAF mutation is not predictive of long-term outcome in papillary thyroid carcinoma. Cancer Med 4(6):791–799CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Tufano RP, Teixeira GV, Bishop J, Carson KA, Xing M (2012) BRAF mutation in papillary thyroid cancer and its value in tailoring initial treatment: a systematic review and meta-analysis. Medicine (Baltimore) 91(5):274–286CrossRefGoogle Scholar
  73. 73.
    Basolo F, Pisaturo F, Pollina LE et al (2000) N-ras mutation in poorly differentiated thyroid carcinomas: correlation with bone metastases and inverse correlation to thyroglobulin expression. Thyroid 10(1):19–23CrossRefPubMedGoogle Scholar
  74. 74.
    Garcia-Rostan G, Zhao H, Camp RL et al (2003) ras mutations are associated with aggressive tumor phenotypes and poor prognosis in thyroid cancer. J Clin Oncol 21(17):3226–3235CrossRefPubMedGoogle Scholar
  75. 75.
    Mayr B, Brabant G, Goretzki P, Ruschoff J, Dietmaier W, Dralle H (1997) ret/PTC-1, -2, and -3 oncogene rearrangements in human thyroid carcinomas: implications for metastatic potential? J Clin Endocrinol Metab 82(4):1306–1307PubMedGoogle Scholar
  76. 76.
    Nikiforov YE (2002) RET/PTC rearrangement in thyroid tumors. Endocr Pathol Spring 13(1):3–16CrossRefGoogle Scholar
  77. 77.
    Landa I, Ibrahimpasic T, Boucai L et al (2016) Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Invest 126(3):1052–1066CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Yip L, Farris C, Kabaker AS et al (2012) Cost impact of molecular testing for indeterminate thyroid nodule fine-needle aspiration biopsies. J Clin Endocrinol Metab 97(6):1905–1912CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Bernet V, Hupart KH, Parangi S, Woeber KA (2014) AACE/ACE disease state commentary: molecular diagnostic testing of thyroid nodules with indeterminate cytopathology. Endocr Pract 20(4):360–363CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Anil K. D’Cruz
    • 1
  • Richa Vaish
    • 1
  • Abhishek Vaidya
    • 2
    • 3
  • Iain J. Nixon
    • 4
  • Michelle D. Williams
    • 5
  • Vincent Vander Poorten
    • 6
  • Fernando López
    • 7
  • Peter Angelos
    • 8
  • Ashok R. Shaha
    • 9
  • Avi Khafif
    • 10
  • Alena Skalova
    • 11
  • Alessandra Rinaldo
    • 12
  • Jennifer L. Hunt
    • 13
  • Alfio Ferlito
    • 14
  1. 1.Head Neck ServicesTata Memorial HospitalMumbaiIndia
  2. 2.National Cancer InstituteNagpurIndia
  3. 3.NKPSIMSNagpurIndia
  4. 4.Departments of Surgery and Otolaryngology, Head and Neck SurgeryEdinburgh UniversityEdinburghUK
  5. 5.Department of PathologyThe University of Texas MD Anderson Cancer CenterHoustonUSA
  6. 6.Otorhinolaryngology-Head and Neck Surgery and Department of Oncology, Section Head and Neck Oncology, University Hospitals LeuvenKU LeuvenLeuvenBelgium
  7. 7.Department of Otolaryngology, Hospital Universitario Central de Asturias, IUOPAUniversity of Oviedo, CIBERONCOviedoSpain
  8. 8.Department of Surgery and Surgical EthicsThe University of Chicago MedicineChicagoUSA
  9. 9.Head and Neck ServiceMemorial Sloan-Kettering Cancer CenterNew YorkUSA
  10. 10.Head and Neck Surgery and Oncology Unit, A.R.M. Center for Advanced Otolaryngology Head and Neck SurgeryAssuta Medical CenterTel AvivIsrael
  11. 11.Department of PathologyCharles University, Faculty of Medicine in PlzenPlzenCzech Republic
  12. 12.University of Udine School of MedicinePaduaItaly
  13. 13.Department of PathologyUniversity of Arkansas for Medical SciencesLittle RockUSA
  14. 14.International Head and Neck Scientific GroupPaduaItaly

Personalised recommendations