Skip to main content
Log in

Cochlear implantation using the underwater technique: long-term results

  • Otology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Introduction

The opening of the round window and the insertion of the electrode array into the scala tympani during cochlear implant surgery can lead to a pressure shock of the delicate inner ear structures. By filling the tympanic cavity with Ringer Solution during these surgical steps (underwater technique), the hydrostatic pressure of the fluid acts as a smooth pressure stabilizer, avoiding a pressure shock of the inner ear structures. The aim of this retrospective study was to present long-term results of this new method of cochlear implantation in underwater technique.

Methods

Altogether, 47 implantations in 43 patients with residual hearing at the frequencies 250, 500 and 1000 Hz in the unaided preoperative pure tone audiometry were included. A cochlear implantation via round window with a conventional full-length electrode was performed in underwater technique. Changes of residual hearing 7 weeks and 24 months after surgery were analyzed.

Results

Overall postimplant hearing preservation 7 weeks after implantation was achieved in 22 ears (47%). Subsequent follow-up was performed on average 24 months after surgery (range 12 months–4.2 years) in all patients. At this late postoperative evaluation, preservation of hearing was recorded in 18 ears (38%). Neither the follow-up time nor the type of electrode had a significant impact on the postoperative hearing loss.

Conclusion

The underwater technique is an atraumatic cochlear implantation technique with hearing preservation rates comparable to results in literature and a very small hearing preservation decline rate over time even when using full-length CI electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hodges AV, Schloffman J, Balkany T (1997) Conservation of residual hearing with cochlear implantation. Am J Otol 18:179–183

    Article  CAS  PubMed  Google Scholar 

  2. von Ilberg CA, Baumann U, Kiefer J et al (2011) Electric-acoustic stimulation of the auditory system: a review of the first decade. Audiol Neuro-otol 16(Suppl 2):1–30. https://doi.org/10.1159/000327765

    Article  Google Scholar 

  3. Gifford RH, Dorman MF, Skarzynski H et al (2013) Cochlear implantation with hearing preservation yields significant benefit for speech recognition in complex listening environments. Ear Hear 34:413–425. https://doi.org/10.1097/AUD.0b013e31827e8163

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gifford RH, Dorman MF, Brown CA (2009) Psychophysical properties of low-frequency hearing: implications for perceiving speech and music via electric and acoustic stimulation. In: Cochlear implants and hearing preservation. KARGER, Basel, pp 51–60

    Chapter  Google Scholar 

  5. Dalbert A, Huber A, Baumann N et al (2016) Hearing preservation after cochlear implantation may improve long-term word perception in the electric-only condition. Otol Neurotol 37:1314–1319. https://doi.org/10.1097/MAO.0000000000001193

    Article  PubMed  Google Scholar 

  6. Carlson ML, Driscoll CLW, Gifford RH et al (2011) Implications of minimizing trauma during conventional cochlear implantation. Otol Neurotol Am Neurotol Soc Eur Acad Otol Neurotol 32:962–968. https://doi.org/10.1097/MAO.0b013e3182204526

    Article  Google Scholar 

  7. D’Elia A, Bartoli R, Giagnotti F, Quaranta N (2012) The role of hearing preservation on electrical thresholds and speech performances in cochlear implantation. Otol Neurotol 33:343–347. https://doi.org/10.1097/MAO.0b013e3182487dbb

    Article  PubMed  Google Scholar 

  8. Kuang H, Haversat HH, Michaelides EM (2015) Impairment of caloric function after cochlear implantation. J Speech Lang Hear Res 58:1387. https://doi.org/10.1044/2015_JSLHR-H-15-0010

    Article  PubMed  Google Scholar 

  9. Bas E, Dinh CT, Garnham C et al (2012) Conservation of hearing and protection of hair cells in cochlear implant patients’ with residual hearing. Anat Rec Adv Integr Anat Evol Biol 295:1909–1927. https://doi.org/10.1002/ar.22574

    Article  Google Scholar 

  10. Friedland DR, Runge-Samuelson C (2009) Soft cochlear implantation: rationale for the surgical approach. Trends Amplif 13:124–138. https://doi.org/10.1177/1084713809336422

    Article  PubMed  PubMed Central  Google Scholar 

  11. Roland PS, Wright CG (2006) Surgical aspects of cochlear implantation: mechanisms of insertional trauma. Adv Oto-Rhino-Laryngol 64:11–30. https://doi.org/10.1159/000094642

    Google Scholar 

  12. Todt I, Basta D, Ernst A (2008) Does the surgical approach in cochlear implantation influence the occurrence of postoperative vertigo? Otolaryngol Head Neck Surg 138:8–12. https://doi.org/10.1016/j.otohns.2007.09.003

    Article  PubMed  Google Scholar 

  13. Wilson BS, Dorman MF (2008) Cochlear implants: current designs and future possibilities. J Rehabil Res Dev 45:695–730

    Article  PubMed  Google Scholar 

  14. Lenarz T, Pau H-W, Paasche G (2013) Cochlear implants. Curr Pharm Biotechnol 14(1):112–123

  15. Miranda PC, Sampaio ALL, Lopes RAF et al (2014) Hearing preservation in cochlear implant surgery. Int J Otolaryngol 2014:468515. https://doi.org/10.1155/2014/468515

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wanna GB, O’Connell BP, Francis DO et al (2017) Predictive factors for short- and long-term hearing preservation in cochlear implantation with conventional-length electrodes. Laryngoscope. https://doi.org/10.1002/lary.26714

    Google Scholar 

  17. Causon A, Verschuur C, Newman TA (2015) A retrospective analysis of the contribution of reported factors in cochlear implantation on hearing preservation outcomes. Otol Neurotol Am Neurotol Soc Eur Acad Otol Neurotol 36:1137–1145. https://doi.org/10.1097/MAO.0000000000000753

    Article  Google Scholar 

  18. Suhling M-C, Majdani O, Salcher R et al (2016) The impact of electrode array length on hearing preservation in cochlear implantation. Otol Neurotol 37:1006–1015. https://doi.org/10.1097/MAO.0000000000001110

    Article  PubMed  Google Scholar 

  19. Eshraghi AA, Van De Water TR (2006) Cochlear implantation trauma and noise-induced hearing loss: apoptosis and therapeutic strategies. Anat Rec Part A Discov Mol Cell Evol Biol 288A:473–481. https://doi.org/10.1002/ar.a.20305

    Article  Google Scholar 

  20. Fayad JN, Makarem AO, Linthicum FH (2009) Histopathologic assessment of fibrosis and new bone formation in implanted human temporal bones using 3D reconstruction. Otolaryngol Head Neck Surg 141:247–252. https://doi.org/10.1016/j.otohns.2009.03.031

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ward BK, Agrawal Y, Hoffman HJ et al (2013) Prevalence and impact of bilateral vestibular hypofunction: results from the 2008 US National Health Interview Survey. JAMA Otolaryngol Head Neck Surg 139:803–810. https://doi.org/10.1001/jamaoto.2013.3913

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kluenter H-D, Lang-Roth R, Beutner D et al (2010) Postural control before and after cochlear implantation: standard cochleostomy versus round window approach. Acta Otolaryngol 130:696–701. https://doi.org/10.3109/00016480903373732

    Article  PubMed  Google Scholar 

  23. Fettiplace R, Hackney CM (2006) The sensory and motor roles of auditory hair cells. Nat Rev Neurosci 7:19–29. https://doi.org/10.1038/nrn1828

    Article  CAS  PubMed  Google Scholar 

  24. Anagiotos A, Beutner D, Gostian A-O et al (2016) Insertion of cochlear implant electrode array using the underwater technique for preserving residual hearing. Otol Neurotol 37:1. https://doi.org/10.1097/MAO.0000000000000989

    Article  Google Scholar 

  25. Hüttenbrink KB (1988) The mechanics of the middle-ear at static air pressures: the role of the ossicular joints, the function of the middle-ear muscles and the behaviour of stapedial prostheses. Acta Oto-Laryngol Suppl 451:1–35

    Article  Google Scholar 

  26. Mittmann P, Ernst A, Todt I (2014) Intracochlear pressure changes due to round window opening: a model experiment. Sci World J 2014:1–7. https://doi.org/10.1155/2014/341075

    Article  Google Scholar 

  27. Mittmann P, Ernst A, Mittmann M, Todt I (2016) Optimisation of the round window opening in cochlear implant surgery in wet and dry conditions: impact on intracochlear pressure changes. Eur Arch Otorhinolaryngol 273:3609–3613. https://doi.org/10.1007/s00405-016-3993-6

    Article  PubMed  Google Scholar 

  28. Anagiotos A, Hamdan N, Lang-Roth R et al (2014) Young age is a positive prognostic factor for residual hearing preservation in conventional cochlear implantation. Otol Neurotol 36:1. https://doi.org/10.1097/MAO.0000000000000586

    Article  Google Scholar 

  29. Balkany TJ, Connell SS, Hodges AV et al (2006) Conservation of residual acoustic hearing after cochlear implantation. Otol Neurotol Am Neurotol Soc Eur Acad Otol Neurotol 27:1083–1088. https://doi.org/10.1097/01.mao.0000244355.34577.85

    Article  Google Scholar 

  30. Kiefer J, Gstoettner W, Baumgartner W et al (2004) Conservation of low-frequency hearing in cochlear implantation. Acta Oto-Laryngol 124:272–280

    Article  Google Scholar 

  31. Skarzynski H, van de Heyning P, Agrawal S et al (2013) Towards a consensus on a hearing preservation classification system. Acta Otolaryngol 133:3–13. https://doi.org/10.3109/00016489.2013.869059

    Article  Google Scholar 

  32. Zanetti D, Nassif N, Redaelli de Zinis LO (2015) Factors affecting residual hearing preservation in cochlear implantation. Acta Otorhinolaryngologica Italica: organo ufficiale della Societa italiana di otorinolaringologia e chirurgia cervico-facciale 35:433–441. https://doi.org/10.14639/0392-100X-619

    CAS  Google Scholar 

  33. Garcia-Ibanez L, Macias AR, Morera C et al (2009) An evaluation of the preservation of residual hearing with the Nucleus Contour Advance electrode. Acta Oto-Laryngol 129:651–664. https://doi.org/10.1080/00016480802369278

    Article  Google Scholar 

  34. Santa Maria PL, Domville-Lewis C, Sucher CM et al (2013) Hearing preservation surgery for cochlear implantation? Hearing and quality of life after 2 years. Otol Neurotol 34:526–531. https://doi.org/10.1097/MAO.0b013e318281e0c9

    Article  PubMed  Google Scholar 

  35. Skarzynski H, Matusiak M, Lorens A et al (2016) Preservation of cochlear structures and hearing when using the Nucleus Slim Straight (CI422) electrode in children. J Laryngol Otol 130:332–339. https://doi.org/10.1017/S0022215115003436

    Article  CAS  PubMed  Google Scholar 

  36. Mertens G, Punte AK, Cochet E et al (2014) Long-term follow-up of hearing preservation in electric-acoustic stimulation patients. Otol Neurotol 35:1765–1772. https://doi.org/10.1097/MAO.0000000000000538

    Article  PubMed  Google Scholar 

  37. Fitzgerald MB, Sagi E, Jackson M et al (2008) Reimplantation of hybrid cochlear implant users with a full-length electrode after loss of residual hearing. Otol Neurotol 29:168–173. https://doi.org/10.1097/MAO.0b013e31815c4875

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konrad Johannes Stuermer.

Ethics declarations

Conflict of interest

All authors contributed substantially to the paper in conception, design and writing. There was no financial support, no funding and no conflict of interest during the preparation of this article. This material has never been published and is not currently under evaluation in any other peer-reviewed publication.

Ethical standards

The study meets the requirements of the local ethics committee (institutional review board).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stuermer, K.J., Schwarz, D., Anagiotos, A. et al. Cochlear implantation using the underwater technique: long-term results. Eur Arch Otorhinolaryngol 275, 875–881 (2018). https://doi.org/10.1007/s00405-018-4886-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-018-4886-7

Keywords

Navigation