European Archives of Oto-Rhino-Laryngology

, Volume 274, Issue 8, pp 3001–3009 | Cite as

Systematic radiographic evaluation of three potential implantation sites for a semi-implantable bone conduction device in 52 patients after previous mastoid surgery

  • Bernhard G. WeissEmail author
  • Mattis Bertlich
  • Rebecka Scheele
  • Martin Canis
  • Mark Jakob
  • Jan M. Sohns
  • Friedrich Ihler


The aim of this study was the evaluation of three localizations for the implantation of a semi-implantable transcutaneous bone conduction device after previous mastoid surgery. This is a retrospective review of electronic datasets of cranial computed tomography studies. The study setting is one tertiary referral center and included 52 consecutive adult patients (60 temporal bones) with a history of mastoid surgery. The intervention was virtual placement of the device with a planning software within the remaining mastoid as well as dorsal of the sigmoid sinus and caudal of the transverse sinus (retrosigmoidal localization) and dorsocranial of the parietomastoid suture and cranial of the transverse sinus (parietal localization). The main outcome measure included dimensions of the bone for the reception of implant and screws, relative localization of dura mater or sinus sigmoideus, distance to the cochlea, thickness of the epicranium and classification of implantation as possible or impossible. Implantation within the remaining mastoid was deemed possible in 35 mastoid bones (58.3%). The best-suited alternative localization was retrosigmoidal in 22 (42.3%) and parietal in 29 patients (55.8%). The mean distance from the implantation site to the cochlea was lowest with on average 41.2 ± 3.1 mm from within the remaining mastoid. The differences in distance from the cochlea to the alternative localizations were each statistically significant (p < 0.01, ANOVA/Bonferroni t test). The retrosigmoidal and parietal localizations are suitable alternative implantation sites. The application of spacers may prevent contact to the sinuses or dura. Preoperative CT-based planning is recommended in cases of previous mastoid surgery.

Level of evidence

4 (case series).


Correction of hearing impairment Otologic surgical procedures Hearing aids X-Ray computed tomography Temporal bone 



Computed tomography


Compliance with ethical standards

Conflict of interest and source of funding

The authors did not receive payment or support in kind for any aspect of the submitted work. FI and MC received travel grants and the reimbursement of congress fees in the past from MED-EL GmbH, Innsbruck, Austria.

Review board approval

This study was approved according to the ethical standards of the Helsinki Declaration by the responsible institutional review board (Ethikkommission der Universitätsmedizin Göttingen) with the reference number 14/12/15An.


  1. 1.
    Edmiston RC, Aggarwal R, Green KM (2015) Bone conduction implants—a rapidly developing field. J Laryngol Otol 129(10):936–940. doi: 10.1017/S0022215115002042 CrossRefPubMedGoogle Scholar
  2. 2.
    Reinfeldt S, Hakansson B, Taghavi H, Eeg-Olofsson M (2015) New developments in bone-conduction hearing implants: a review. Med Devices (Auckl) 8:79–93. doi: 10.2147/MDER.S39691 CrossRefGoogle Scholar
  3. 3.
    Ihler F, Bewarder J, Blum J, Matthias C, Canis M (2014) Long-term functional outcome and satisfaction of patients with an active middle ear implant for sensorineural hearing loss compared to a matched population with conventional hearing aids. Eur Arch Otorhinolaryngol 271(12):3161–3169. doi: 10.1007/s00405-013-2811-7 CrossRefPubMedGoogle Scholar
  4. 4.
    Sprinzl G, Lenarz T, Ernst A, Hagen R, Wolf-Magele A, Mojallal H, Todt I, Mlynski R, Wolframm MD (2013) First European multicenter results with a new transcutaneous bone conduction hearing implant system: short-term safety and efficacy. Otol Neurotol 34(6):1076–1083. doi: 10.1097/MAO.0b013e31828bb541 CrossRefPubMedGoogle Scholar
  5. 5.
    Sprinzl GM, Wolf-Magele A (2016) The Bonebridge Bone Conduction Hearing Implant: indication criteria, surgery and a systematic review of the literature. Clin Otolaryngol 41(2):131–143. doi: 10.1111/coa.12484 CrossRefPubMedGoogle Scholar
  6. 6.
    Zernotti ME, Sarasty AB (2015) Active bone conduction prosthesis: Bonebridge (TM). Int Arch Otorhinolaryngol 19(4):343–348. doi: 10.1055/s-0035-1564329 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Jung TT, Alper CM, Hellstrom SO, Hunter LL, Casselbrant ML, Groth A, Kemaloglu YK, Kim SG, Lim D, Nittrouer S, Park KH, Sabo D, Spratley J (2013) Panel 8: complications and sequelae. Otolaryngol Head Neck Surg 148(4 suppl):E122–E143. doi: 10.1177/0194599812467425 CrossRefPubMedGoogle Scholar
  8. 8.
    Marchisio P, Chonmaitree T, Leibovitz E, Lieberthal A, Lous J, Mandel E, McCormick D, Morris P, Ruohola A (2013) Panel 7: treatment and comparative effectiveness research. Otolaryngol Head Neck Surg 148(4 suppl):E102–E121. doi: 10.1177/0194599812465397 CrossRefPubMedGoogle Scholar
  9. 9.
    Sirikci A, Bayazit YA, Kervancioglu S, Ozer E, Kanlikama M, Bayram M (2004) Assessment of mastoid air cell size versus sigmoid sinus variables with a tomography-assisted digital image processing program and morphometry. Surg Radiol Anatomy 26(2):145–148. doi: 10.1007/s00276-003-0201-3 CrossRefGoogle Scholar
  10. 10.
    Lee DH, Jung MK, Yoo YH, Seo JH (2008) Analysis of unilateral sclerotic temporal bone: how does the sclerosis change the mastoid pneumatization morphologically in the temporal bone? Surg Radiol Anatomy 30(3):221–227. doi: 10.1007/s00276-008-0310-0 CrossRefGoogle Scholar
  11. 11.
    Rajati M, Shahabi A, Haghir H, Afzalaghaee M (2013) The distance of the sigmoid sinus and the middle fossa dura from the external auditory canal in chronic otitis media. Surg Radiol Anatomy 35(6):477–480. doi: 10.1007/s00276-012-1062-4 CrossRefGoogle Scholar
  12. 12.
    Hassepass F, Bulla S, Aschendorff A, Maier W, Traser L, Steinmetz C, Wesarg T, Arndt S (2015) The bonebridge as a transcutaneous bone conduction hearing system: preliminary surgical and audiological results in children and adolescents. Eur Arch Otorhinolaryngol 272(9):2235–2241. doi: 10.1007/s00405-014-3137-9 CrossRefPubMedGoogle Scholar
  13. 13.
    Matsumoto N, Takumi Y, Cho B, Mori K, Usami S, Yamashita M, Hashizume M, Komune S (2015) Template-guided implantation of the Bonebridge: clinical experience. Eur Arch Otorhinolaryngol 272(12):3669–3675. doi: 10.1007/s00405-014-3452-1 CrossRefPubMedGoogle Scholar
  14. 14.
    Takumi Y, Matsumoto N, Cho B, Ono H, Mori K, Tsukada K, Ichinose A, Yoshimura H, Iwasaki S, Komune S, Usami S (2014) A clinical experience of ‘STAMP’ plate-guided Bonebridge implantation. Acta Otolaryngol 134(10):1042–1046. doi: 10.3109/00016489.2014.900703 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Wimmer W, Gerber N, Guignard J, Dubach P, Kompis M, Weber S, Caversaccio M (2015) Topographic bone thickness maps for Bonebridge implantations. Eur Arch Otorhinolaryngol 272(7):1651–1658. doi: 10.1007/s00405-014-2976-8 CrossRefPubMedGoogle Scholar
  16. 16.
    Canis M, Ihler F, Blum J, Matthias C (2013) CT-assisted navigation for retrosigmoidal implantation of the Bonebridge. Hno 61(12):1038–1044. doi: 10.1007/s00106-012-2652-5 CrossRefPubMedGoogle Scholar
  17. 17.
    Lassaletta L, Sanchez-Cuadrado I, Munoz E, Gavilan J (2014) Retrosigmoid implantation of an active bone conduction stimulator in a patient with chronic otitis media. Auris Nasus Larynx 41(1):84–87. doi: 10.1016/j.anl.2013.04.004 CrossRefPubMedGoogle Scholar
  18. 18.
    Barbara M, Perotti M, Gioia B, Volpini L, Monini S (2013) Transcutaneous bone-conduction hearing device: audiological and surgical aspects in a first series of patients with mixed hearing loss. Acta Otolaryngol 133(10):1058–1064. doi: 10.3109/00016489.2013.799293 CrossRefPubMedGoogle Scholar
  19. 19.
    Manrique M, Sanhueza I, Manrique R, de Abajo J (2014) A new bone conduction implant: surgical technique and results. Otol Neurotol 35(2):216–220. doi: 10.1097/MAO.0000000000000253 CrossRefPubMedGoogle Scholar
  20. 20.
    Tsang WS, Yu JK, Bhatia KS, Wong TK, Tong MC (2013) The Bonebridge semi-implantable bone conduction hearing device: experience in an Asian patient. J Laryngol Otol 127(12):1214–1221. doi: 10.1017/S0022215113002144 CrossRefPubMedGoogle Scholar
  21. 21.
    Plontke SK, Radetzki F, Seiwerth I, Herzog M, Brandt S, Delank KS, Rahne T (2014) Individual computer-assisted 3D planning for surgical placement of a new bone conduction hearing device. Otol Neurotol 35(7):1251–1257. doi: 10.1097/MAO.0000000000000405 PubMedGoogle Scholar
  22. 22.
    Eeg-Olofsson M, Stenfelt S, Tjellstrom A, Granstrom G (2008) Transmission of bone-conducted sound in the human skull measured by cochlear vibrations. Int J Audiol 47(12):761–769. doi: 10.1080/14992020802311216 CrossRefPubMedGoogle Scholar
  23. 23.
    Reinfeldt S, Hakansson B, Taghavi H, Eeg-Olofsson M (2014) Bone conduction hearing sensitivity in normal-hearing subjects: transcutaneous stimulation at BAHA vs BCI position. Int J Audiol 53(6):360–369. doi: 10.3109/14992027.2014.880813 CrossRefPubMedGoogle Scholar
  24. 24.
    Rahne T, Schilde S, Seiwerth I, Radetzki F, Stoevesandt D, Plontke SK (2016) Mastoid dimensions in children and young adults: consequences for the geometry of transcutaneous bone-conduction implants. Otol Neurotol 37(1):57–61. doi: 10.1097/mao.0000000000000881 CrossRefPubMedGoogle Scholar
  25. 25.
    Law EK, Bhatia KS, Tsang WS, Tong MC, Shi L (2016) CT pre-operative planning of a new semi-implantable bone conduction hearing device. Eur Radiol 26(6):1686–1695. doi: 10.1007/s00330-015-3983-x CrossRefPubMedGoogle Scholar
  26. 26.
    Lang J Jr, Samii A (1991) Retrosigmoidal approach to the posterior cranial fossa. An anatomical study. Acta Neurochir (Wien) 111(3–4):147–153CrossRefGoogle Scholar
  27. 27.
    Todt I, Lamecker H, Ramm H, Frenzel H, Wollenberg B, Beleites T, Zahnert T, Thomas JP, Dazert S, Ernst A (2014) Development of a computed tomography data-based Vibrant Bonebridge viewer. Hno 62(6):439–442. doi: 10.1007/s00106-014-2851-3 CrossRefPubMedGoogle Scholar
  28. 28.
    Ito T, Roosli C, Kim CJ, Sim JH, Huber AM, Probst R (2011) Bone conduction thresholds and skull vibration measured on the teeth during stimulation at different sites on the human head. Audiol Neurootol 16(1):12–22. doi: 10.1159/000314282 CrossRefPubMedGoogle Scholar
  29. 29.
    Perez R, Adelman C, Sohmer H (2011) Bone conduction activation through soft tissues following complete immobilization of the ossicular chain, stapes footplate and round window. Hear Res 280(1–2):82–85. doi: 10.1016/j.heares.2011.04.007 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of OtorhinolaryngologyUniversity Medical Center GöttingenGöttingenGermany
  2. 2.Institute for Diagnostic and Interventional RadiologyUniversity Medical Center GöttingenGöttingenGermany
  3. 3.Department of Nuclear MedicineHannover Medical SchoolHannoverGermany

Personalised recommendations