Skip to main content
Log in

Effect of a liposomal hyaluronic acid gel loaded with dexamethasone in a guinea pig model after manual or motorized cochlear implantation

  • Otology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Goals of cochlear implantation have shifted from complete insertion of the cochlear electrode array towards low traumatic insertion with minimally invasive techniques. The aim of this study was first to evaluate, in a guinea pig model of cochlear implantation, the effect of a motorized insertion technique on hearing preservation. The second goal was to study a new gel formulation containing dexamethasone phosphate loaded in liposomes (DEX-P). Guinea pigs had a unilateral cochlear implantation with either a manual technique (n = 12), or a motorized technique (n = 15), with a 0.4 mm diameter and 4 mm long array trough a cochleostomy. At the end of the procedure, hyaluronic acid gel containing drug-free liposomes, or liposomes loaded with DEX-P, was injected into the bulla. Auditory brainstem responses thresholds were recorded before surgery and day 2 and 7 after surgery. All the animals had increased auditory brainstem responses thresholds after the cochlear implantation. Implanted animals with the motorized insertion tool experienced a partial hearing recovery at day 7 but not in those implanted with the manual insertion procedure (p < 0.001). In the manually implanted animals, a partial recovery was observed when DEX-P contained in liposomal gel was locally administrated (p < 0.0001). Finally, no additive effect with the motorized insertion was noticed. The deleterious effect of manual insertion, during cochlear implantation, can be prevented with local DEX-P administration in the bulla at day 7. The use of a motorized tool performed more atraumatic electrode array insertion for postoperative hearing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lehnhardt E (1993) Intracochleäre Plazierung der Cochlear Implant Elektroden in soft surgery technique (Intracochlear placement of cochlear implant electrodes in soft surgery technique). HNO 41:356–359 (article in German)

    CAS  PubMed  Google Scholar 

  2. Rajan GP, Kontorinis G, Kuthubutheen J (2012) The effects of insertion speed on inner ear function during cochlear implantation: a comparison study. Audiol Neurotol 18:17–22

    Article  Google Scholar 

  3. Maria PLS, Gluth MB, Yuan Y et al (2014) Hearing Preservation Surgery for Cochlear Implantation: a Meta-analysis. Otol Neurotol 35:256–269

    Article  Google Scholar 

  4. Nguyen Y, Mosnier I, Borel S et al (2013) Evolution of electrode array diameter for hearing preservation in cochlear implantation. Acta Otolaryngol 133:116–122

    Article  PubMed  Google Scholar 

  5. Hunter JB, Gifford RH, Wanna GB et al (2016) Hearing preservation outcomes with a mid-scala electrode in cochlear implantation. Otol Neurootol 37:235–240

    Article  Google Scholar 

  6. Bell B, Stieger C, Gerber N et al (2012) A self-developed and constructed robot for minimally invasive cochlear implantation. Acta Otolaryngol 132:355–360

    Article  PubMed  Google Scholar 

  7. Nguyen Y, Miroir M, Kazmitcheff G et al (2012) Cochlear implant insertion forces in microdissected human cochlea to. Otol Neurootol 17:290–298

    Google Scholar 

  8. Majdani O, Schurzig D, Hussong A et al (2010) Force measurement of insertion of cochlear implant electrode arrays in vitro: comparison of surgeon to automated insertion tool. Acta Otolaryngol 130:31–36

    Article  PubMed  PubMed Central  Google Scholar 

  9. Nguyen Y, Kazmitcheff G, De Seta D, et al (2014) Definition of metrics to evaluate cochlear array insertion forces performed with forceps, insertion tool, or motorized tool in temporal bone specimens. Biomed Res Int 532570

  10. Bas E, Dinh CT, Garnham C et al (2012) Conservation of hearing and protection of hair cells in cochlear implant patients’ with residual hearing. Anat Rec 295:1909–1927

    Article  Google Scholar 

  11. Honeder C, Landegger LD, Engleder E et al (2015) Effects of intraoperatively applied glucocorticoid hydrogels on residual hearing and foreign body reaction in a guinea pig model of cochlear implantation. Acta Otolaryngol 135:313–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sterkers O, Ferrary E, Amiel C (1988) Production of inner ear fluids. Physiol Rev 68:1083–1128

    CAS  PubMed  Google Scholar 

  13. Bahadir O, Aydin S, Caylan R (2003) The effect on the middle-ear cavity of an absorbable gelatine sponge alone and with corticosteroids. Eur Arch Otorhinolaryngol 260:19–23

    PubMed  Google Scholar 

  14. El Kechai N, Agnely F, Mamelle E et al (2015) Recent advances in local drug delivery to the inner ear. Int J Pharm 494:83–101

    Article  PubMed  Google Scholar 

  15. Mayol L, Quaglia F, Borzacchiello A et al (2008) A novel poloxamers/hyaluronic acid in situ forming hydrogel for drug delivery: rheological, mucoadhesive and in vitro release properties. Eur J Pharm Biopharm 70:199–206

    Article  CAS  PubMed  Google Scholar 

  16. Liao Y-H, Jones SA, Forbes B et al (2005) Hyaluronan: pharmaceutical characterization and drug delivery. Drug Deliv 12:327–342

    Article  CAS  PubMed  Google Scholar 

  17. Friedland DR, Runge-Samuelson C (2009) Soft cochlear implantation: rationale for the surgical approach. Trends Amplif 13:124–138

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhang Y, Zhang W, Löbler M et al (2011) Inner ear biocompatibility of lipid nanocapsules after round window membrane application. Int J Pharm 404:211–219

    Article  CAS  PubMed  Google Scholar 

  19. El Kechai N, Mamelle E, Nguyen Y et al (2016) Hyaluronic acid liposomal gel sustains delivery of a corticoid to the inner ear. J Control Release 226:248–257

    Article  PubMed  Google Scholar 

  20. Lajavardi L, Camelo S, Agnely F et al (2009) New formulation of vasoactive intestinal peptide using liposomes in hyaluronic acid gel for uveitis. J Control Release 139:22–30

    Article  CAS  PubMed  Google Scholar 

  21. Bochot A, Fattal E (2012) Liposomes for intravitreal drug delivery: a state of the art. J Control Release 161:628–634

    Article  CAS  PubMed  Google Scholar 

  22. Miroir M, Nguyen Y, Kazmitcheff G et al (2012) Friction force measurement during cochlear implant insertion: application to a force-controlled insertion tool design. Otol Neurotol 33:1092–1100

    PubMed  Google Scholar 

  23. El Kechai N, Bochot A, Huang N et al (2015) Effect of liposomes on rheological and syringeability properties of hyaluronic acid hydrogels intended for local injection of drugs. Int J Pharm 487:187–196

    Article  PubMed  Google Scholar 

  24. Lasrig R, Ridder GJ, Fradis M (2002) Intracochlear insertion of electrodes using hyaluronic acid in cohlear implant surgery. J Laryngol Otol 116:371–372

    Google Scholar 

  25. Vivero RJ, Joseph DE, Angeli S et al (2008) Dexamethasone base conserves hearing from electrode trauma-induced hearing loss. Laryngoscope 118:2028–2035

    Article  CAS  PubMed  Google Scholar 

  26. Quesnel S, Nguyen Y, Elmaleh M et al (2011) Effects of systemic administration of methylprednisolone on residual hearing in an animal model of cochlear implantation. Acta Otolaryngol 33:579–584

    Article  Google Scholar 

  27. Kontorinis G, Lenarz T, Stöver T, Paasche G (2011) Impact of the insertion speed of cochlear implant electrodes on the insertion forces. Otol Neurotol 32:565–570

    Article  PubMed  Google Scholar 

  28. Choudhury B, Adunka OF, Awan O et al (2014) Electrophysiologic consequences of flexible electrode insertions in gerbils noise induced hearing loss. Otol Neurotol 35:519–525

    Article  PubMed  PubMed Central  Google Scholar 

  29. Todt I, Mittmann P, Ernst A (2014) Intracochlear fluid pressure changes related to the insertional speed of a CI electrode. Biomed Res Int 507241

  30. Markou K, Rachovitsas D, Veros K et al (2014) Perilymphatic fistula of the round window after whiplash injury: another cause of inner ear conductive hearing loss. Am J Otolaryngol 35:822–825

    Article  CAS  PubMed  Google Scholar 

  31. Honeder C, Schöpper H, Reznicek G, Gstoettner W (2014) Sustained release of triamcinolone acetonide from an intratympanically applied hydrogel designed for the delivery of high glucocorticoid doses. Audiol Neurootol 19:193–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ramos BF, Tsuji RK, Bento RF et al (2015) Hearing preservation using topical dexamethasone alone and associated with hyaluronic acid in cochlear implantation. Acta Otolaryngol 135:473–477

    Article  CAS  PubMed  Google Scholar 

  33. Liu Y, Jolly C, Braun S et al (2016) In vitro and in vivo pharmacokinetic study of a dexamethasone-releasing silicone for cochlear implants. Eur Arch Otorhinolaryngol 273:1745–1753

    Article  PubMed  Google Scholar 

  34. O’Leary SJ, Monks P, Kel G et al (2013) Relations between cochlear histopathology and hearing loss in experimental cochlear implantation. Hear Res 298:27–35

    Article  PubMed  Google Scholar 

  35. Chang A, Eastwood H, Sly D et al (2009) Factors influencing the efficacy of round window dexamethasone protection of residual hearing post-cochlear implant surgery. Hear Res 255:67–72

    Article  CAS  PubMed  Google Scholar 

  36. Tanaka C, Nguyen-huynh A, Loera K et al (2014) Factors associated with hearing loss in a normal-hearing guinea pig model of hybrid cochlear implants. Hear Res 316:82–93

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wright CG, Roland PS (2013) Vascular trauma during cochlear implantation: a contributor to residual hearing loss? Otol Neurotol 34:402–407

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth Mamelle.

Ethics declarations

Funding

This research was supported by Oticon Medical (Vallauris, France), Agence Nationale de la Recherche, Groupe d’Etude des Maladies de l’Oreille, Fondation pour la Recherche Médicale, INSERM and UPMC. Naila El Kechai acknowledges the Ministère de l’Education Nationale, de l’Enseignement Supérieur et de la Recherche for her PhD grant.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamelle, E., Kechai, N.E., Granger, B. et al. Effect of a liposomal hyaluronic acid gel loaded with dexamethasone in a guinea pig model after manual or motorized cochlear implantation. Eur Arch Otorhinolaryngol 274, 729–736 (2017). https://doi.org/10.1007/s00405-016-4331-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-016-4331-8

Keywords

Navigation