Skip to main content
Log in

Structural and functional changes of cortical and subcortical structures following peripheral vestibular damage in humans

  • Review Article
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

An Erratum to this article was published on 25 April 2016

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Agrawal Y, Della Santina JP, Schubert CC, Lloyd MM (2009) Disorders of balance and vestibular disorders in US adults. Arch Intern Med 169:938–944

    Article  PubMed  Google Scholar 

  2. Jones SM, Jones TA, Mills KN, Gaines GC (2009) Anatomical and physiological considerations in vestibular dysfunction and compensation. Semin Hear 30:231–241

    Article  PubMed  PubMed Central  Google Scholar 

  3. Khan S, Chang R (2013) Anatomy of the vestibular system: a review. Neuro Rehabil 32:437–443

    Google Scholar 

  4. Highstein SM, Holstein GR (2012) The anatomical and physiological framework for vestibular prostheses. Anat Rec (Hoboken) 295:2000–2009

    Article  Google Scholar 

  5. Baloh RW (1998) Vertigo. Lancet 352:1841–1846

    Article  CAS  PubMed  Google Scholar 

  6. Pavlou M (2010) The use of optokinetic stimulation in vestibular rehabilitation. J Neurol Phys Ther 34:105–110

    Article  PubMed  Google Scholar 

  7. Cawthorne T (1944) The physiological basis for head exercices. J Chart Soc Physiother 30:106

    Google Scholar 

  8. Deveze A, Bernard-Demanze L, Xavier F, Lavieille JP, Elziere M (2014) Vestibular compensation and vestibular rehabilitation: current concepts and new trends. Neurophysiol Clin 44:49–57

    Article  CAS  PubMed  Google Scholar 

  9. Boyer FC, Percebois-Macadre L, Regrain E et al (2008) Vestibular rehabilitation therapy. Neurophysiol Clin 38:479–487

    Article  CAS  PubMed  Google Scholar 

  10. Giray M, Kirazli Y, Karapolat H, Celebisoy N, Bilgen C, Kirazli T (2009) Short-term effects of vestibular rehabilitation in patients with chronic unilateral vestibular dysfunction: a randomized controlled study. Arch Phys Med Rehabil 90:1325–1331

    Article  PubMed  Google Scholar 

  11. Hillier SL, Hollohan V (2007) Vestibular rehabilitation for unilateral peripheral vestibular dysfunction. Cochrane Database Syst Rev 36:248–249

    Google Scholar 

  12. Karapolat H, Celebisoy N, Kirazli Y et al (2014) Is vestibular rehabilitation as effective in bilateral vestibular dysfunction as in unilateral vestibular dysfunction? Eur J Phys Rehabil Med 50:657–663

    CAS  PubMed  Google Scholar 

  13. Porciuncula F, Johnson CC, Glickman LB (2012) The effect of vestibular rehabilitation on adults with bilateral vestibular hypofunction: a systematic review. J Vestib Res 22:283–298

    PubMed  Google Scholar 

  14. Brown KE, Whitney SL, Marchetti GF, Wrisley DM, Furman JM (2006) Physical therapy for central vestibular dysfunction. Arch Phys Med Rehabil 87:76–81

    Article  PubMed  Google Scholar 

  15. Alghadir AH, Iqbal ZA, Whitney SL (2013) An update on vestibular physical therapy. J Chin Med Assoc 76:1–8

    Article  PubMed  Google Scholar 

  16. Goncalves DU, Felipe L, Lima TM (2008) Interpretation and use of caloric testing. Braz J Otorhinolaryngol 74:440–446

    Article  PubMed  Google Scholar 

  17. Rosengren SM, Welgampola MS, Colebatch JG (2010) Vestibular evoked myogenic potentials: past, present and future. Clin Neurophysiol 121:636–651

    Article  CAS  PubMed  Google Scholar 

  18. Buttner U, Kremmyda O (2007) Smooth pursuit eye movements and optokinetic nystagmus. Dev Ophthalmol 40:76–89

    Article  PubMed  Google Scholar 

  19. Dieterich M, Brandt T (2008) Functional brain imaging of peripheral and central vestibular disorders. Brain 131:2538–2552

    Article  PubMed  Google Scholar 

  20. Brandt T, Bartenstein P, Janek A, Dieterich M (1998) Reciprocal inhibitory visual-vestibular interaction. Visual motion stimulation deactivates the parieto-insular vestibular cortex. Brain 121(Pt 9):1749–1758

    Article  PubMed  Google Scholar 

  21. Dieterich M, Bense S, Stephan T, Yousry TA, Brandt T (2003) fMRI signal increases and decreases in cortical areas during small-field optokinetic stimulation and central fixation. Exp Brain Res 148:117–127

    Article  PubMed  Google Scholar 

  22. Karim HT, Fuhrman SI, Furman JM, Huppert TJ (2013) Neuroimaging to detect cortical projection of vestibular response to caloric stimulation in young and older adults using functional near-infrared spectroscopy (fNIRS). Neuroimage 76:1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Klingner CM, Volk GF, Flatz C et al (2013) Components of vestibular cortical function. Behav Brain Res 236:194–199

    Article  PubMed  Google Scholar 

  24. Bense S, Deutschlander A, Stephan T et al (2004) Preserved visual-vestibular interaction in patients with bilateral vestibular failure. Neurology 63:122–128

    Article  CAS  PubMed  Google Scholar 

  25. Miyamoto T, Fukushima K, Takada T, de Waele C, Vidal PP (2007) Saccular stimulation of the human cortex: a functional magnetic resonance imaging study. Neurosci Lett 423:68–72

    Article  CAS  PubMed  Google Scholar 

  26. Schlindwein P, Mueller M, Bauermann T, Brandt T, Stoeter P, Dieterich M (2008) Cortical representation of saccular vestibular stimulation: VEMPs in fMRI. Neuroimage 39:19–31

    Article  CAS  PubMed  Google Scholar 

  27. Brandt T, Dieterich M (1999) The vestibular cortex. Its locations, functions, and disorders. Ann N Y Acad Sci 871:293–312

    Article  CAS  PubMed  Google Scholar 

  28. Kikuchi M, Naito Y, Senda M et al (2009) Cortical activation during optokinetic stimulation—an fMRI study. Acta Otolaryngol 129:440–443

    Article  PubMed  Google Scholar 

  29. Murofushi T, Iwasaki S, Ushio M (2006) Recovery of vestibular evoked myogenic potentials after a vertigo attack due to vestibular neuritis. Acta Otolaryngol 126:364–367

    Article  PubMed  Google Scholar 

  30. Bense S, Janush B, Vucurevic G et al (2006) Brainstem and cerebellar fMRI-activation during horizontal and vertical optokinetic stimulation. Exp Brain Res 174:312–323

    Article  PubMed  Google Scholar 

  31. Bense S, Stephan T, Yousry TA, Brandt T, Dieterich M (2001) Multisensory cortical signal increases and decreases during vestibular galvanic stimulation (fMRI). J Neurophysiol 85:886–899

    CAS  PubMed  Google Scholar 

  32. Brandt T, Schautzer F, Hamilton DA et al (2005) Vestibular loss causes hippocampal atrophy and impaired spatial memory in humans. Brain 128:2732–2741

    Article  PubMed  Google Scholar 

  33. Hufner K, Stephan T, Hamilton DA et al (2009) Gray-matter atrophy after chronic complete unilateral vestibular deafferentation. Ann N Y Acad Sci 1164:383–385

    Article  PubMed  Google Scholar 

  34. Helmchen C, Klinkenstein J, Machner B, Rambold H, Mohr C, Sander T (2009) Structural changes in the human brain following vestibular neuritis indicate central vestibular compensation. Ann N Y Acad Sci 1164:104–115

    Article  PubMed  Google Scholar 

  35. zu Eulenburg P, Stoeter P, Dieterich M (2010) Voxel-based morphometry depicts central compensation after vestibular neuritis. Ann Neurol 68:241–249

    Article  PubMed  Google Scholar 

  36. Lacour M, Tighilet B (2010) Plastic events in the vestibular nuclei during vestibular compensation: the brain orchestration of a “deafferentation” code. Restor Neurol Neurosci 28:19–35

    PubMed  Google Scholar 

  37. Olabi B, Bergquist F, Dutia MB (2009) Rebalancing the commissural system: mechanisms of vestibular compensation. J Vestib Res 19:201–207

    PubMed  Google Scholar 

  38. Helmchen C, Ze Y, Sprenger A, Münte T (2014) Changes in resting-state fMRI in vestibular neuritis. Brain Structure and Function 219:1889–1900

    Article  PubMed  Google Scholar 

  39. Deutschlander A, Hufner K, Kalla R et al (2008) Unilateral vestibular failure suppresses cortical visual motion processing. Brain 131:1025–1034

    Article  PubMed  Google Scholar 

  40. Halmagyi GM, Weber KP, Curthoys IS (2010) Vestibular function after acute vestibular neuritis. Restor Neurol Neurosci 28:37–46

    CAS  PubMed  Google Scholar 

  41. Bense S, Bartenstein P, Lochmann M, Schlindwein P, Brandt T, Dieterich M (2004) Metabolic changes in vestibular and visual cortices in acute vestibular neuritis. Ann Neurol 56:624–630

    Article  PubMed  Google Scholar 

  42. Dieterich M, Brandt T (2010) Imaging cortical activity after vestibular lesions. Restor Neurol Neurosci 28:47–56

    PubMed  Google Scholar 

  43. Alessandrini M, Napolitano B, Bruno E, Belcastro L, Ottaviani F, Schillaci O (2009) Cerebral plasticity in acute vestibular deficit. Eur Arch Otorhinolaryngol 266:1547–1551

    Article  PubMed  Google Scholar 

  44. Dieterich M, Bauermann T, Best C, Stoeter P, Schlindwein P (2007) Evidence for cortical visual substitution of chronic bilateral vestibular failure (an fMRI study). Brain 130:2108–2116

    Article  PubMed  Google Scholar 

  45. Stahle J (1990) Controversies on the caloric response. From Barany’s theory to studies in microgravity. Acta Otolaryngol 109:162–167

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Issam Saliba.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00405-016-4034-1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maheu, M., Fournier, P., Landry, S.P. et al. Structural and functional changes of cortical and subcortical structures following peripheral vestibular damage in humans. Eur Arch Otorhinolaryngol 274, 65–70 (2017). https://doi.org/10.1007/s00405-016-3986-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-016-3986-5

Keywords

Navigation