Skip to main content

Advertisement

Log in

A trans-well-based cellular model for the rapid pre-evaluation of tympanic membrane repair materials

  • Otology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

It is important to have a standardized tympanic membrane (TM) perforation platform to evaluate the various myringoplasty materials that have been studied and developed extensively during recent years. However, currently there are no cellular models specifically designed for this purpose, and animal models remain unsatisfactory. The purpose of this study is to propose an inexpensive, readily available, well-controlled, and easy-to-create cellular model as a substitute for use in the evaluation of TM repairing materials. A trans-well model was created using a cell culture insert with a round hole created at the center of the polycarbonate membrane. HaCaT cells were cultured on the fenestrated culture insert, and the desired myringoplasty graft was placed at the center of the window for one week and observed by fluorescent microscopy under vital staining. Under this cellular model, there was notable migration of HaCaT cells onto the positive control graft (rabbit fascia), while only a few cell clusters were observed on the negative control graft (paper). Model validation showed that the cell migration ratio for the PLLA + 1% hyaluronic acid (HA) graft is significantly higher than using myringoplasty paper, poly l-lactide (PLLA), or PLLA + 0.5% HA (p < 0.05). This trans-well-based cellular model might be a useful pre-evaluation platform for the evaluation of TM repairing materials. The model is inexpensive, readily available, easy to create, and standardized for use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Niklasson A, Tano K (2011) The Gelfoam(R) plug: an alternative treatment for small eardrum perforations. Laryngoscope 121:782–784. doi:10.1002/lary.21451

    Article  PubMed  Google Scholar 

  2. Fagan P, Patel N (2002) A hole in the drum. An overview of tympanic membrane perforations. Aust Fam Physician 31:707–710

    PubMed  Google Scholar 

  3. Kaftan H, Hosemann W, Beule A, Junghans D (2004) An improved animal model for chronic perforation of the tympanic membrane. HNO 52:714–719. doi:10.1007/s00106-003-0963-2

    CAS  PubMed  Google Scholar 

  4. Amoils CP, Jackler RK, Milczuk H, Kelly KE, Cao K (1992) An animal model of chronic tympanic membrane perforation. Otolaryngol Head Neck Surg 106:47–55

    CAS  PubMed  Google Scholar 

  5. Truy E, Disant F, Morgon A (1995) Chronic tympanic membrane perforation: an animal model. Am J Otol 16:222–225

    CAS  PubMed  Google Scholar 

  6. Wang AY, Shen Y, Wang JT, Friedland PL, Atlas MD, Dilley RJ (2014) Animal models of chronic tympanic membrane perforation: A ‘time-out’ to review evidence and standardize design. Int J Pediatr Otorhinolaryngol 78:2048–2055. doi:10.1016/j.ijporl.2014.10.007

    Article  PubMed  Google Scholar 

  7. Lee OJ, Lee JM, Kim JH, Kim J, Kweon H, Jo YY, Park CH (2012) Biodegradation behavior of silk fibroin membranes in repairing tympanic membrane perforations. J Biomed Mater Res A 100:2018–2026. doi:10.1002/jbm.a.33308

    Article  PubMed  Google Scholar 

  8. Farhadi M, Mirzadeh H, Solouk A, Asghari A, Jalessi M, Ghanbari H, Yazdanifard P (2012) Collagen-immobilized patch for repairing small tympanic membrane perforations: in vitro and in vivo assays. J Biomed Mater Res A 100:549–553. doi:10.1002/jbm.a.33293

    Article  PubMed  Google Scholar 

  9. Kim JH, Bae JH, Lim KT, Choung PH, Park JS, Choi SJ, Im AL, Lee ET, Choung YH, Chung JH (2009) Development of water-insoluble chitosan patch scaffold to repair traumatic tympanic membrane perforations. J Biomed Mater Res A 90:446–455. doi:10.1002/jbm.a.32119

    Article  PubMed  Google Scholar 

  10. Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE (1988) Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 106:761–771. doi:10.1083/jcb.106.3.761

    Article  CAS  PubMed  Google Scholar 

  11. Schurer N, Kohne A, Schliep V, Barlag K, Goerz G (1993) Lipid composition and synthesis of HaCaT cells, an immortalized human keratinocyte line, in comparison with normal human adult keratinocytes. Exp Dermatol 2:179–185. doi:10.1111/j.1600-0625.1993.tb00030.x

    Article  CAS  PubMed  Google Scholar 

  12. Redmond SL, Levin B, Heel KA, Atlas MD, Marano RJ (2011) Phenotypic and genotypic profile of human tympanic membrane derived cultured cells. J Mol Histol 42:15–25. doi:10.1007/s10735-010-9303-5

    Article  CAS  PubMed  Google Scholar 

  13. Hung S-H (2014) Development of Tracheal Scaffolds Using Hybridization of PLLA Coil Skeleton and Electrospun Structures. J Med Biol Eng 34:218–223. doi:10.5405/jmbe.1525

    Article  Google Scholar 

  14. Saliba I (2008) Hyaluronic acid fat graft myringoplasty: how we do it. Clin Otolaryngol 33:610–614. doi:10.1111/j.1749-4486.2008.01823.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Saliba I, Knapik M, Froehlich P, Abela A (2012) Advantages of hyaluronic acid fat graft myringoplasty over fat graft myringoplasty. Arch Otolaryngol Head Neck Surg 138:950–955. doi:10.1001/archotol.2013.210

    Article  PubMed  Google Scholar 

  16. Alzahrani M, Saliba I (2015) Hyaluronic acid fat graft myringoplasty vs fat patch fat graft myringoplasty. Eur Arch Otorhinolaryngol 272:1873–1877. doi:10.1007/s00405-014-2982-x

    Article  PubMed  Google Scholar 

  17. Saliba I, Woods O (2011) Hyaluronic acid fat graft myringoplasty: a minimally invasive technique. Laryngoscope 121:375–380. doi:10.1002/lary.21365

    Article  PubMed  Google Scholar 

  18. Kristensen S (1992) Spontaneous healing of traumatic tympanic membrane perforations in man: a century of experience. J Laryngol Otol 106:1037–1050. doi:10.1017/S0022215100121723

    Article  CAS  PubMed  Google Scholar 

  19. Thorburn IB (1960) A critical review of tympanoplastic surgery. J Laryngol Otol 74:453–474. doi:10.1017/S0022215100056814

    Article  CAS  PubMed  Google Scholar 

  20. DiLeo MD, Amedee RG (1996) Fibrin-glue-reinforced paper patch myringoplasty of large persistent tympanic membrane perforations in the guinea pig. ORL J Otorhinolaryngol Relat Spec 58:27–31. doi:10.1159/000276790

    Article  CAS  PubMed  Google Scholar 

  21. Weber DE, Semaan MT, Wasman JK, Beane R, Bonassar LJ, Megerian CA (2006) Tissue-engineered calcium alginate patches in the repair of chronic chinchilla tympanic membrane perforations. Laryngoscope 116:700–704. doi:10.1097/01.mlg.0000208549.44462.fa

    Article  CAS  PubMed  Google Scholar 

  22. Fiorino F, Barbieri F (2007) Fat graft myringoplasty after unsuccessful tympanic membrane repair. Eur Arch Otorhinolaryngol 264:1125–1128. doi:10.1007/s00405-007-0323-z

    Article  PubMed  Google Scholar 

  23. Kasoju N, Bora U (2012) Silk fibroin in tissue engineering. Adv Healthcare Mat 1:393–412. doi:10.1002/adhm.201200097

    Article  CAS  Google Scholar 

  24. Kim JH, Choi SJ, Park JS, Lim KT, Choung PH, Kim SW, Lee JB, Chung JH, Choung YH (2010) Tympanic membrane regeneration using a water-soluble chitosan patch. Tissue Eng Part A 16:225–232. doi:10.1089/ten.TEA.2009.0476

    Article  PubMed  Google Scholar 

  25. Wieland AM, Sundback CA, Hart A, Kulig K, Masiakos PT, Hartnick CJ (2010) Poly(glycerol sebacate)-engineered plugs to repair chronic tympanic membrane perforations in a chinchilla model. Otolaryngol Head Neck Surg 143:127–133. doi:10.1016/j.otohns.2010.01.025

    Article  PubMed  Google Scholar 

  26. Shen Y, Redmond SL, Teh BM, Yan S, Wang Y, Zhou L, Budgeon CA, Eikelboom RH, Atlas MD, Dilley RJ, Zheng M, Marano RJ (2013) Scaffolds for tympanic membrane regeneration in rats. Tissue Eng Part A 19:657–668. doi:10.1089/ten.TEA.2012.0053

    Article  CAS  PubMed  Google Scholar 

  27. Levin B, Rajkhowa R, Redmond SL, Atlas MD (2009) Grafts in myringoplasty: utilizing a silk fibroin scaffold as a novel device. Expert Rev Med Devices 6:653–664. doi:10.1586/erd.09.47

    Article  CAS  PubMed  Google Scholar 

  28. Santa Maria PL, Atlas MD, Ghassemifar R (2007) Chronic tympanic membrane perforation: a better animal model is needed. Wound Repair Regen 15:450–458. doi:10.1111/j.1524-475X.2007.00251.x

    Article  PubMed  Google Scholar 

  29. Shen Y, Guo Y, Wilczynska M, Li J, Hellstrom S, Ny T (2014) Plasminogen initiates and potentiates the healing of acute and chronic tympanic membrane perforations in mice. J Trans Med 12:5. doi:10.1186/1479-5876-12-5

    Article  Google Scholar 

  30. Mondain M, Ryan A (1995) Epidermal growth factor and basic fibroblast growth factor are induced ir guinea-pig tympanic membrane following traumatic perforation. Acta Otolaryngol 115:50–54. doi:10.3109/00016489509133346

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Taipei Medical University Hospital Research Fund (104TMU-TMUH-16). There are no other financial disclosures related to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to How Tseng.

Ethics declarations

Financial disclosure information

This study was supported by the Taipei Medical University Hospital Research Fund (104TMU-TMUH-16). There are no other financial disclosures related to this study.

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hung, SH., Su, CH. & Tseng, H. A trans-well-based cellular model for the rapid pre-evaluation of tympanic membrane repair materials. Eur Arch Otorhinolaryngol 273, 2027–2034 (2016). https://doi.org/10.1007/s00405-015-3768-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-015-3768-5

Keywords

Navigation