Skip to main content

Advertisement

Log in

The European GWAS-identified risk SNP rs457717 within IQGAP2 is not associated with age-related hearing impairment in Han male Chinese population

  • Otology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

This study aimed to test the association between the European GWAS-identified risk IQGAP2 SNP rs457717 (A>G) and age-related hearing impairment (ARHI) in a Han male Chinese (HMC) population. A total of 2420 HMC subjects were divided into two groups [group 70+: >70 years (n = 1306), and group 70−: ≤70 years (n = 1114)]. The participants were categorised into case and control groups according to Z high scores for group 70− and the severity of hearing loss and different audiogram shapes identified by K-means cluster analysis for group 70+. The IQGAP2 tagSNP rs457717 was genotyped in accordance with the different ARHI phenotypes. The genotype distributions of IQGAP2 (AA/AG/GG) were not significantly different between the case and control groups (P = 0.613 for group 70−; P = 0.602 for group 70+). Compared with genotype AA, the ORs of genotypes AG and GG for ARHI were not significantly different following adjustment for other environmental risk factors. We demonstrated that the IQGAP2 TagSNP rs457717 (A/G) was not associated with ARHI in HMC individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pacala JT, Yueh B (2012) Hearing deficits in the older patient: “I didn’t notice anything”. JAMA 307(11):1185–1194

    Article  CAS  PubMed  Google Scholar 

  2. Cruickshanks KJ, Wiley TL, Tweed TS, Klein BE, Klein R, Mares-Perlman JA, Nondahl DM (1991) Prevalence of hearing loss in older adults in Beaver Dam, Wisconsin. The epidemiology of hearing loss study. Am J Epidemiol 148(9):879–886

    Article  Google Scholar 

  3. Dalstra JA, Kunst AE, Borrell C, Breeze E, Cambois E, Costa G, Geurts JJ, Lahelma E, Van Oyen H, Rasmussen NK, Regidor E, Spadea T, Mackenbach JP (2005) Socioeconomic differences in the prevalence of common chronic diseases: an overview of eight European countries. Int J Epidemiol 34(2):316–326

    Article  CAS  PubMed  Google Scholar 

  4. Parmet S, Lynm C, Glass RM (2007) JAMA patient page. Adult hearing loss. JAMA 298(1):130

    Article  CAS  PubMed  Google Scholar 

  5. Van Eyken E, Van Camp G, Van Laer L (2007) The complexity of age-related hearing impairment: contributing environmental and genetic factors. Audiol Neurootol 12(6):345–358

    Article  PubMed  Google Scholar 

  6. Hwang JH, Chen JC, Hsu CJ, Liu TC (2011) Association of obstructive sleep apnea and auditory dysfunctions in older subjects. Otolaryngol Head Neck Surg 144(1):114–119

    Article  PubMed  Google Scholar 

  7. Hwang JH, Wu CC, Hsu CJ, Liu TC, Yang WS (2009) Association of central obesity with the severity and audiometric configurations of age-related hearing impairment. Obesity (Silver Spring) 17(9):1796–1801

    Article  Google Scholar 

  8. Huang Q, Tang J (2010) Age-related hearing loss or presbycusis. Eur Arch Otorhinolaryngol 267(8):1179–1191

    Article  PubMed  Google Scholar 

  9. Christensen K, Frederiksen H, Hoffman HJ (2001) Genetic and environmental influences on self-reported reduced hearing in the old and oldest old. J Am Geriatr Soc 49(11):1512–1517

    Article  CAS  PubMed  Google Scholar 

  10. Gates GA, Couropmitree NN, Myers RH (1999) Genetic associations in age-related hearing thresholds. Arch Otolaryngol Head Neck Surg 125(6):654–659

    Article  CAS  PubMed  Google Scholar 

  11. Karlsson KK, Harris JR, Svartengren M (1997) Description and primary results from an audiometric study of male twins. Ear Hear 18(2):114–120

    Article  CAS  PubMed  Google Scholar 

  12. Wingfield A, Panizzon M, Grant MD, Toomey R, Kremen WS, Franz CE, Jacobson KC, Eisen SA, Lyons M (2007) A twin-study of genetic contributions to hearing acuity in late middle age. J Gerontol A Biol Sci Med Sci 62(11):1294–1299

    Article  PubMed  PubMed Central  Google Scholar 

  13. Huyghe JR, Van Laer L, Hendrickx JJ, Fransen E, Demeester K, Topsakal V, Kunst S, Manninen M, Jensen M, Bonaconsa A, Mazzoli M, Baur M, Hannula S, Mäki-Torkko E, Espeso A, Van Eyken E, Flaquer A, Becker C, Stephens D, Sorri M, Orzan E, Bille M, Parving A, Pyykkö I, Cremers CW, Kremer H, Van de Heyning PH, Wienker TF, Nürnberg P, Pfister M, Van Camp G (2008) Genome-wide SNP-based linkage scan identifies a locus on 8q24 for an age-related hearing impairment trait. Am J Hum Genet 83(3):401–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Friedman RA, Van Laer L, Huentelman MJ, Sheth SS, Van Eyken E, Corneveaux JJ, Tembe WD, Halperin RF, Thorburn AQ, Thys S, Bonneux S, Fransen E, Huyghe J, Pyykkö I, Cremers CW, Kremer H, Dhooge I, Stephens D, Orzan E, Pfister M, Bille M, Parving A, Sorri M, Van de Heyning PH, Makmura L, Ohmen JD, Linthicum FH Jr, Fayad JN, Pearson JV, Craig DW, Stephan DA, Van Camp G (2009) GRM7 variants confer susceptibility to age-related hearing impairment. Hum Mol Genet 18(4):785–796

    Article  CAS  PubMed  Google Scholar 

  15. Van Laer L, Huyghe JR, Hannula S, Van Eyken E, Stephan DA, Mäki-Torkko E, Aikio P, Fransen E, Lysholm-Bernacchi A, Sorri M, Huentelman MJ, Van Camp G (2010) A genome-wide association study for age-related hearing impairment in the Saami. Eur J Hum Genet 18(6):685–693

    Article  PubMed  PubMed Central  Google Scholar 

  16. Van Eyken E, Van Laer L, Fransen E, Topsakal V, Lemkens N, Laureys W, Nelissen N, Vandevelde A, Wienker T, Van De Heyning P, Van Camp G (2006) KCNQ4: a gene for age-related hearing impairment? Hum Mutat 27(10):1007–1016

    Article  PubMed  Google Scholar 

  17. Dupret JM, Rodrigues-Lima F (2005) Structure and regulation of the drug-metabolizing enzymes arylamine N-acetyltransferases. Curr Med Chem 12(3):311–318

    Article  CAS  PubMed  Google Scholar 

  18. Unal M, Tamer L, Doğruer ZN, Yildirim H, Vayisoğlu Y, Camdeviren H (2005) N-Acetyltransferase 2 gene polymorphism and presbycusis. Laryngoscope 115(12):2238–2241

    Article  PubMed  Google Scholar 

  19. Bared A, Ouyang X, Angeli S, Du LL, Hoang K, Yan D, Liu XZ (2010) Antioxidant enzymes, presbycusis, and ethnic variability. Otolaryngol Head Neck Surg 143(2):263–268

    Article  PubMed  PubMed Central  Google Scholar 

  20. Van Laer L, Van Eyken E, Fransen E, Huyghe JR, Topsakal V, Hendrickx JJ, Hannula S, Mäki-Torkko E, Jensen M, Demeester K, Baur M, Bonaconsa A, Mazzoli M, Espeso A, Verbruggen K, Huyghe J, Huygen P, Kunst S, Manninen M, Konings A, Diaz-Lacava AN, Steffens M, Wienker TF, Pyykkö I, Cremers CW, Kremer H, Dhooge I, Stephens D, Orzan E, Pfister M, Bille M, Parving A, Sorri M, Van de Heyning PH, Van Camp G (2008) The grainyhead like 2 gene (GRHL2), alias TFCP2L3, is associated with age-related hearing impairment. Hum Mol Genet 17(2):159–169

    Article  PubMed  Google Scholar 

  21. O’Grady G, Boyles AL, Speer M, DeRuyter F, Strittmatter W, Worley G (2007) Apolipoprotein E alleles and sensorineural hearing loss. Int J Audiol. 46(4):183–186

    Article  PubMed  Google Scholar 

  22. Uchida Y, Sugiura S, Nakashima T, Ando F, Shimokata H (2009) Endothelin-1 gene polymorphism and hearing impairment in elderly Japanese. Laryngoscope 119(5):938–943

    Article  CAS  PubMed  Google Scholar 

  23. Scherer EQ, Arnold W, Wangemann P (2005) Pharmacological reversal of endothelin-1 mediated constriction of the spiral modiolar artery: a potential new treatment for sudden sensorineural hearing loss. BMC Ear Nose Throat Disord 29(5):10

    Article  Google Scholar 

  24. Sugiura S, Uchida Y, Nakashima T, Ando F, Shimokata H (2010) The association between gene polymorphisms in uncoupling proteins and hearing impairment in Japanese elderly. Acta Otolaryngol 130(4):487–492

    Article  CAS  PubMed  Google Scholar 

  25. Markaryan A, Nelson EG, Hinojosa R (2009) Quantification of the mitochondrial DNA common deletion in presbycusis. Laryngoscope 119(6):1184–1189

    Article  CAS  PubMed  Google Scholar 

  26. Seidman MD, Khan MJ, Bai U, Shirwany N, Quirk WS (2000) Biologic activity of mitochondrial metabolites on aging and age-related hearing loss. Am J Otol 21(2):161–167

    Article  CAS  PubMed  Google Scholar 

  27. Newman DL, Fisher LM, Ohmen J, Parody R, Fong CT, Frisina ST, Mapes F, Eddins DA, Robert Frisina D, Frisina RD, Friedman RA (2012) GRM7 variants associated with age-related hearing loss based on auditory perception. Hear Res 294(1–2):125–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Robertson NG, Khetarpal U, Gutiérrez-Espeleta GA, Bieber FR, Morton CC (1994) Isolation of novel and known genes from a human fetal cochlear cDNA library using subtractive hybridization and differential screening. Genomics 23(1):42–50

    Article  CAS  PubMed  Google Scholar 

  29. Yamashiro S, Abe H, Mabuchi I (2007) IQGAP2 is required for the cadherin-mediated cell-to-cell adhesion in Xenopus laevis embryos. Dev Biol 308(2):485–493

    Article  CAS  PubMed  Google Scholar 

  30. Fransen E, Van Laer L, Lemkens N, Caethoven G, Flothmann K, Govaerts P, Van de Heyning P, Van Camp G (2004) A novel Z score-based method to analyze candidate genes for age-related hearing impairment. Ear Hear 25(2):133–141

    Article  PubMed  Google Scholar 

  31. Lee CY, Hwang JH, Hou SJ, Liu TC (2010) Using cluster analysis to classify audiogram shapes. Int J Audiol. 49(9):628–633

    Article  PubMed  Google Scholar 

  32. International Organisation of Standardisation (2000) ISO 7029 Acoustic-threshold of hearing by air conduction as a function of age and sex for otologically normal persons. Geneva

  33. World Health Organization (2006) Prevention of deafness and hearing impairment: grades of hearing impairment. http://www.who.int/pbd/deafness/hearing_impairment_grades/en/. Accessed 20 May 2007

  34. Luo H, Yang T, Jin X, Pang X, Li J, Chai Y, Li L, Zhang Y, Zhang L, Zhang Z, Wu W, Zhang Q, Hu X, Sun J, Jiang X, Fan Z, Huang Z, Wu H (2013) Association of GRM7 variants with different phenotype patterns of age-related hearing impairment in an elderly male Han Chinese population. PLoS One 8(10):e77153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dubno JR, Lee FS, Matthews LJ, Mills JH (1997) Age-related and gender-related changes in monaural speech recognition. J Speech Lang Hear Res 40(2):444–452

    Article  CAS  PubMed  Google Scholar 

  36. Wiley TL, Chappell R, Carmichael L, Nondahl DM, Cruickshanks KJ (2008) Changes in hearing thresholds over 10 years in older adults. J Am Acad Audiol 19(4):281–292 (quiz 371)

    Article  PubMed  PubMed Central  Google Scholar 

  37. Price K, Zhu X, Guimaraes PF, Vasilyeva ON, Frisina RD (2009) Hormone replacement therapy diminishes hearing in peri-menopausal mice. Hear Res 252(1–2):29–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Briggs MW, Sacks DB (2003) IQGAP1 as signal integrator: Ca2+, calmodulin, Cdc42 and the cytoskeleton. FEBS Lett. 542(1–3):7–11

    Article  CAS  PubMed  Google Scholar 

  39. Brill S, Li S, Lyman CW, Church DM, Wasmuth JJ, Weissbach L, Bernards A, Snijders AJ (1996) The Ras GTPase-activating-protein-related human protein IQGAP2 harbors a potential actin binding domain and interacts with calmodulin and Rho family GTPases. Mol Cell Biol 16(9):4869–4878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang S, Watanabe T, Noritake J, Fukata M, Yoshimura T, Itoh N, Harada T, Nakagawa M, Matsuura Y, Arimura N, Kaibuchi K (2007) IQGAP3, a novel effector of Rac1 and Cdc42, regulates neurite outgrowth. J Cell Sci 120(Pt 4):567–577

    Article  CAS  PubMed  Google Scholar 

  41. Schmidt VA, Scudder L, Devoe CE, Bernards A, Cupit LD, Bahou WF (2003) IQGAP2 functions as a GTP-dependent effector protein in thrombin-induced platelet cytoskeletal reorganization. Blood 101(8):3021–3028

    Article  CAS  PubMed  Google Scholar 

  42. Cupit LD, Schmidt VA, Miller F, Bahou WF (2004) Distinct PAR/IQGAP expression patterns during murine development: implications for thrombin-associated cytoskeletal reorganization. Mamm Genome 15(8):618–629

    Article  CAS  PubMed  Google Scholar 

  43. Kazmierczak P, Sakaguchi H, Tokita J, Wilson-Kubalek EM, Milligan RA, Müller U, Kachar B (2007) Cadherin 23 and protocadherin 15 interact to form tip-link filaments in sensory hair cells. Nature 449(7158):87–91

    Article  CAS  PubMed  Google Scholar 

  44. Bolz H, von Brederlow B, Ramírez A, Bryda EC, Kutsche K, Nothwang HG, Seeliger M, C-Salcedó Cabrera M, Vila MC, Molina OP, Gal A, Kubisch C (2001) Mutation of CDH23, encoding a new member of the cadherin gene family, causes Usher syndrome type 1D. Nat Genet 27(1):108–112

    Article  CAS  PubMed  Google Scholar 

  45. Bork JM, Peters LM, Riazuddin S, Bernstein SL, Ahmed ZM, Ness SL, Polomeno R, Ramesh A, Schloss M, Srisailpathy CR, Wayne S, Bellman S, Desmukh D, Ahmed Z, Khan SN, Kaloustian VM, Li XC, Lalwani A, Riazuddin S, Bitner-Glindzicz M, Nance WE, Liu XZ, Wistow G, Smith RJ, Griffith AJ, Wilcox ER, Friedman TB, Morell RJ (2001) Usher syndrome 1D and nonsyndromic autosomal recessive deafness DFNB12 are caused by allelic mutations of the novel cadherin-like gene CDH23. Am J Hum Genet 68(1):26–37

    Article  CAS  PubMed  Google Scholar 

  46. Tabor HK, Risch NJ, Myers RM (2002) Candidate-gene approaches for studying complex genetic traits: practical considerations. Nat Rev Genet 3(5):391–397

    Article  CAS  PubMed  Google Scholar 

  47. Noben-Trauth K, Zheng QY, Johnson KR (2003) Association of cadherin 23 with polygenic inheritance and genetic modification of sensorineural hearing loss. NatGenet. 35(1):21–23

    CAS  Google Scholar 

  48. de Heer AR, Pauw RJ, Huygen PL, Collin RW, Kremer H, Cremers CW (2009) Flat threshold and mid-frequency hearing impairment in a Dutch DFNA8/12 family with a novel mutation in TECTA. Some evidence for protection of the inner ear. Audiol Neurootol 14(3):153–162

    Article  PubMed  Google Scholar 

  49. Van Eyken E, Van Camp G, Fransen E, Topsakal V, Hendrickx JJ, Demeester K, Van de Heyning P, Mäki-Torkko E, Hannula S, Sorri M, Jensen M, Parving A, Bille M, Baur M, Pfister M, Bonaconsa A, Mazzoli M, Orzan E, Espeso A, Stephens D, Verbruggen K, Huyghe J, Dhooge I, Huygen P, Kremer H, Cremers CW, Kunst S, Manninen M, Pyykkö I, Lacava A, Steffens M, Wienker TF, Van Laer L (2007) Contribution of the N-acetyltransferase 2 polymorphism NAT2*6A to age-related hearing impairment. J Med Genet 44(9):570–578 (Epub 2007 May 18)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from Medical Engineering (Technology) Cross Research Fund, Shanghai Jiao Tong University (No. YG2014MS47), and grants from the Medical Research Fund of Shanghai Municipal Health and Family Planning Commission (No. 201440295).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiping LI.

Ethics declarations

Conflict of interest

Authors indicate they have no financial relationship with the organisation that sponsored the research. And the authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, H., Wu, H., Shen, H. et al. The European GWAS-identified risk SNP rs457717 within IQGAP2 is not associated with age-related hearing impairment in Han male Chinese population. Eur Arch Otorhinolaryngol 273, 1677–1687 (2016). https://doi.org/10.1007/s00405-015-3711-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-015-3711-9

Keywords

Navigation