Skip to main content
Log in

Exploring the feasibility of smart phone microphone for measurement of acoustic voice parameters and voice pathology screening

  • Laryngology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

The objective of this study is to evaluate the reliability of acoustic voice parameters obtained using smart phone (SP) microphones and investigate the utility of use of SP voice recordings for voice screening. Voice samples of sustained vowel/a/obtained from 118 subjects (34 normal and 84 pathological voices) were recorded simultaneously through two microphones: oral AKG Perception 220 microphone and SP Samsung Galaxy Note3 microphone. Acoustic voice signal data were measured for fundamental frequency, jitter and shimmer, normalized noise energy (NNE), signal to noise ratio and harmonic to noise ratio using Dr. Speech software. Discriminant analysis-based Correct Classification Rate (CCR) and Random Forest Classifier (RFC) based Equal Error Rate (EER) were used to evaluate the feasibility of acoustic voice parameters classifying normal and pathological voice classes. Lithuanian version of Glottal Function Index (LT_GFI) questionnaire was utilized for self-assessment of the severity of voice disorder. The correlations of acoustic voice parameters obtained with two types of microphones were statistically significant and strong (r = 0.73–1.0) for the entire measurements. When classifying into normal/pathological voice classes, the Oral-NNE revealed the CCR of 73.7 % and the pair of SP-NNE and SP-shimmer parameters revealed CCR of 79.5 %. However, fusion of the results obtained from SP voice recordings and GFI data provided the CCR of 84.60 % and RFC revealed the EER of 7.9 %, respectively. In conclusion, measurements of acoustic voice parameters using SP microphone were shown to be reliable in clinical settings demonstrating high CCR and low EER when distinguishing normal and pathological voice classes, and validated the suitability of the SP microphone signal for the task of automatic voice analysis and screening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Roy N, Merrill RM, Thibeault S, Parsa RA, Gray SD, Smith EM (2004) Prevalence of voice disorders in teachers and the general population. J Speech Lang Hear Res 47:281–293

    Article  PubMed  Google Scholar 

  2. Branski RC, Cukier-Blaj S, Pusic A, Cano SJ, Klassen A, Mener D et al (2010) Measuring quality of life in dysphonic patients: a systematic review of content development in patient-reported outcomes measures. J Voice 24:193–198

    Article  PubMed  Google Scholar 

  3. Bhattacharyya N (2014) The prevalence of voice problems among adults in the united states. Laryngoscope 124:2359–2362

    Article  PubMed  Google Scholar 

  4. Cohen SM, Kim J, Roy N, Courey M (2014) Delayed otolaryngology referral for voice disorders increases health care costs. Am J Med 128:11–18

    Google Scholar 

  5. Dejonckere PH, Bradley P, Clemente P, Cornut G, Crevier-Buchman L, Friedrich G et al (2001) A basic protocol for functional assessment of voice pathology, especially for investigating the efficacy of (phonosurgical) treatments and evaluating new assessment techniques. Eur Arch Otorhinolaryngol 258:77–82

    Article  CAS  PubMed  Google Scholar 

  6. Kaleem MF, Ghoraani B, Guergachi A, Krishnan S (2011) Telephone-quality pathological speech classification using empirical mode decomposition. Conf Proc IEEE Eng Med Biol Soc 2011:7095–7098

    CAS  PubMed  Google Scholar 

  7. Mat Baki M, Wood G, Alston M, Ratcliffe P, Sandhu G, Rubin JS, Birchall MA (2015) Reliability of operavox against multidimensional voice program (MDVP). Clin Otolaryngol 40:22–28

    Article  CAS  PubMed  Google Scholar 

  8. Reynolds DA (1995) Large population speaker identification using clean and telephone speech. Signal Process Lett IEEE 2:46–48

    Article  Google Scholar 

  9. Moran RJ, Reilly RB, de Chazal P, Lacy PD (2006) Telephony-based voice pathology assessment using automated speech analysis. IEEE Trans Biomed Eng 53:468–477

    Article  PubMed  Google Scholar 

  10. Wormald RN, Moran RJ, Reilly RB, Lacy PD (2008) Performance of an automated, remote system to detect vocal fold paralysis. Ann Otol Rhinol Laryngol 117:834–838

    Article  PubMed  Google Scholar 

  11. Jokinen E, Yrttiaho S, Pulakka H, Vainio M, Alku P (2012) Signal-to-noise ratio adaptive post-filtering method for intelligibility enhancement of telephone speech. J Acoust Soc Am 132:3990–4001

    Article  PubMed  Google Scholar 

  12. Lin E, Hornibrook J, Ormond T (2012) Evaluating iphone recordings for acoustic voice assessment. Folia Phoniatr Logop 64:122–130

    Article  PubMed  Google Scholar 

  13. Bach KK, Belafsky PC, Wasylik K, Postma GN, Koufman JA (2005) Validity and reliability of the glottal function index. Arch Otolaryngol Head Neck Surg 131:961–964

    Article  PubMed  Google Scholar 

  14. Pribuisiene R, Baceviciene M, Uloza V, Vegiene A, Antuseva J (2012) Validation of the Lithuanian version of the glottal function index. J Voice 26:73–78

    Article  Google Scholar 

  15. Verikas A, Gelzinis A, Bacauskiene M, Uloza V, Kaseta M (2009) Using the patient’s questionnaire data to screen laryngeal disorders. Comput Biol Med 39:148–155

    Article  CAS  PubMed  Google Scholar 

  16. Verikas A, Bacauskiene M, Gelzinis A, Vaiciukynas E, Uloza V (2012) Questionnaire-versus voice-based screening for laryngeal disorders. Expert Syst Appl 39:6254–6262

    Article  Google Scholar 

  17. Uloza V, Saferis V, Uloziene I (2005) Perceptual and acoustic assessment of voice pathology and the efficacy of endolaryngeal phonomicrosurgery. J Voice 19:138–145

    Article  PubMed  Google Scholar 

  18. Bland JM, Altman D (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 327:307–310

    Article  Google Scholar 

  19. Elliott AC, Woodward WA (2007) Statistical analysis quick reference guidebook: with SPSS examples. Sage Publications, New York

    Google Scholar 

  20. Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  21. Saenz-Lechon N, Godino-Llorente JI, Osma-Ruiz V, Gomez-Vilda P (2006) Methodological issues in the development of automatic systems for voice pathology detection. Biomed Signal Process Control 1:120–128

    Article  Google Scholar 

  22. Brümmer N, de Villiers E (2013) The BOSARIS toolkit: Theory, algorithms and code for surviving the new dcf. ArXiv Preprint ArXiv 1304.2865

  23. Hothorn T, Hornik K, Zeileis A (2006) Unbiased recursive partitioning: a conditional inference framework. J Comput Gr Stat 15:651–674

    Article  Google Scholar 

  24. Strobl C, Malley J, Tutz G (2009) An introduction to recursive partitioning: rationale, application, and characteristics of classification and regression trees, bagging, and random forests. Psychol Methods 14:323–348

    Article  PubMed Central  PubMed  Google Scholar 

  25. Eadie TL, Doyle PC (2005) Classification of dysphonic voice: acoustic and auditory-perceptual measures. J Voice 19:1–14

    Article  PubMed  Google Scholar 

  26. Smits I, Ceuppens P, De Bodt MS (2005) A comparative study of acoustic voice measurements by means of Dr. Speech and computerized speech lab. J Voice 19:187–196

    Article  PubMed  Google Scholar 

  27. Oguz H, Demirci M, Safak MA, Arslan N, Islam A, Kargin S (2007) Effects of unilateral vocal cord paralysis on objective voice measures obtained by Praat. Eur Arch Otorhinolaryngol 264:257–261

    Article  PubMed  Google Scholar 

  28. Zhang Y, Jiang JJ (2008) Acoustic analyses of sustained and running voices from patients with laryngeal pathologies. J Voice 22:1–9

    Article  PubMed  Google Scholar 

  29. Maryn Y, Corthals P, De Bodt M, Van Cauwenberge P, Deliyski D (2009) Perturbation measures of voice: a comparative study between multi-dimensional voice program and praat. Folia Phoniatr Logop 61:217–226

    Article  PubMed  Google Scholar 

  30. Linder R, Albers AE, Hess M, Pöppl SJ, Schönweiler R (2008) Artificial neural network-based classification to screen for dysphonia using psychoacoustic scaling of acoustic voice features. J Voice 22:155–163

    Article  PubMed  Google Scholar 

  31. Muhammad G, Mesallam TA, Malki KH, Farahat M, Mahmood A, Alsulaiman M (2012) Multidirectional regression (MDR)-based features for automatic voice disorder detection. J Voice 26:19–27

    Article  Google Scholar 

  32. Svec JG, Granqvist S (2010) Guidelines for selecting microphones for human voice production research. Am J Speech Lang Pathol 19:356–368

    Article  PubMed  Google Scholar 

  33. Moon KR, Chung SM, Park HS, Kim HS (2012) Materials of acoustic analysis: sustained vowel versus sentence. J Voice 26:563–565

    Article  PubMed  Google Scholar 

  34. Kaleem M, Ghoraani B, Guergachi A, Krishnan S (2013) Pathological speech signal analysis and classification using empirical mode decomposition. Med Biol Eng Comput 51:811–821

    Article  PubMed  Google Scholar 

  35. Henríquez P, Alonso JB, Ferrer MA, Travieso CM, Godino-Llorente JI, Díaz-de-María F (2009) Characterization of healthy and pathological voice through measures based on nonlinear dynamics. Audio Speech Lang Process IEEE Trans 17:1186–1195

    Article  Google Scholar 

  36. Uloza V, Verikas A, Bacauskiene M, Gelzinis A, Pribuisiene R, Kaseta M, Saferis V (2011) Categorizing normal and pathological voices: automated and perceptual categorization. J Voice 25:700–708

    Article  PubMed  Google Scholar 

  37. Vaiciukynas E, Verikas A, Gelzinis A, Bacauskiene M, Uloza V (2012) Exploring similarity-based classification of larynx disorders from human voice. Speech Commun 54:601–610

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by grant VP1-3.1- ŠMM-10-V-02-030 from the Ministry of Education and Science of Republic of Lithuania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virgilijus Uloza.

Ethics declarations

Conflict of interest

No conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uloza, V., Padervinskis, E., Vegiene, A. et al. Exploring the feasibility of smart phone microphone for measurement of acoustic voice parameters and voice pathology screening. Eur Arch Otorhinolaryngol 272, 3391–3399 (2015). https://doi.org/10.1007/s00405-015-3708-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-015-3708-4

Keywords

Navigation