European Archives of Oto-Rhino-Laryngology

, Volume 272, Issue 11, pp 3593–3594 | Cite as

Are small olfactory bulbs a risk for olfactory loss following an upper respiratory tract infection?

  • A. Patterson
  • A. Hähner
  • H. H. Kitzler
  • Thomas HummelEmail author
Letter to the Editor


Considering the correlation between olfactory function and size of the human olfactory bulb (OB), it may be that OB volume is representative of the average number of functional olfactory receptor neurons in the nose. We observed a woman (64-year-old) with a 3-week history of hyposmia following an upper respiratory tract infection. Interestingly, both OB volumes were below the tenth percentile of the general population which seems to be difficult to explain by rapid, adaptive changes in the OB volume. It is hypothesized that small OBs may be a risk factor for acquiring olfactory loss.


Smell Flavor MRI Anosmia 


Conflict of interest

All authors declare that they have no financial interest or benefit arising from the direct applications of their research.


  1. 1.
    Buschhuter D, Smitka M et al (2008) Correlation between olfactory bulb volume and olfactory function. Neuroimage 42(2):498–502CrossRefPubMedGoogle Scholar
  2. 2.
    Cummings DM, Knab BR et al (1997) Effects of unilateral olfactory deprivation in the developing opossum, Monodelphis domestica. J Neurobiol 33:429–438CrossRefPubMedGoogle Scholar
  3. 3.
    Gudziol V, Buschhuter D et al (2009) Increasing olfactory bulb volume due to treatment of chronic rhinosinusitis—a longitudinal study. Brain 132(Pt 11):3096–3101CrossRefPubMedGoogle Scholar
  4. 4.
    Haehner A, Rodewald A et al (2008) Changes of the volume of the human olfactory bulb with olfactory function. Arch ORL 134:621–624Google Scholar
  5. 5.
    Hummel T, Kobal G et al (2007) Normative data for the “Sniffin’ Sticks” including tests of odor identification, odor discrimination, and olfactory thresholds: an upgrade based on a group of more than 3,000 subjects. Eur Arch Otorhinolaryngol 264:237–243CrossRefPubMedGoogle Scholar
  6. 6.
    Korol DL, Brunjes PC (1992) Unilateral naris closure and vascular development in the rat olfactory bulb. Neuroscience 46:631–641CrossRefPubMedGoogle Scholar
  7. 7.
    Leopold DA, Hornung DE et al (1991) Olfactory loss after upper respiratory infection. In: Getchell TV, Doty RL, Bartoshuk LM, Snow JB (eds) Smell and taste in health and disease. Raven Press, New York, pp 731–734Google Scholar
  8. 8.
    Paskin TR, Iqbal TR et al (2011) Olfactory bulb recovery following reversible deafferentation with repeated detergent application in the adult zebrafish. Neuroscience 196:276–284CrossRefPubMedGoogle Scholar
  9. 9.
    Rombaux P, Duprez T et al (2009) Olfactory bulb volume in the clinical assessment of olfactory dysfunction. Rhinology 47:3–9PubMedGoogle Scholar
  10. 10.
    Seiden AM (2004) Postviral olfactory loss. Otolaryngol Clin North Am 37:1159–1166CrossRefPubMedGoogle Scholar
  11. 11.
    von Gudden B (1870) Experimentaluntersuchungen ueber das periphere und zentrale Nervensystem. Archiv f Psychiatrie u Nervenkrankheiten 2:693–723CrossRefGoogle Scholar
  12. 12.
    Yousem DM, Geckle RJ et al (1999) Posttraumatic smell loss: relationship of psychophysical tests and volumes of the olfactory bulbs and tracts and the temporal lobes. Acad Radiol 6:264–272CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • A. Patterson
    • 1
  • A. Hähner
    • 1
  • H. H. Kitzler
    • 2
  • Thomas Hummel
    • 1
    Email author
  1. 1.Department of Otorhinolaryngology, Smell and Taste ClinicTU DresdenDresdenGermany
  2. 2.Department of NeuroradiologyTU DresdenDresdenGermany

Personalised recommendations