Skip to main content

Advertisement

Log in

The middle ear immune defense changes with age

  • Otology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Otitis media is a common disease in childhood. In adults, the disease is relatively rare, but more frequently associated with complications. Possible reasons for this discrepancy are age-related differences in pathogen exposure, anatomy of the Eustachian tube and immune system. The objective of this study was to analyze the relationship between age and the mucosal immune system in the middle ear. It is hypothesized that genes involved in the middle ear immune system will change with age. A comprehensive assessment of these genetic differences using the techniques of complementary DNA has not been performed. Complementary DNA microarray technology was used to identify immune-related genes differentially expressed between the normal middle ear mucosa of young (10 days old) and adult rats (80 days old). Data were analyzed using tools of bioinformatics. A total of 260 age-related genes were identified, of which 51 genes were involved in the middle ear mucosal immune system. Genes related to the innate immune system, including alpha-defensin, calcium-binding proteins S100A9 and S100A8, were upregulated in young rats, whereas genes related to the adaptive immune system, including CD3 molecules, zeta-chain T-cell receptor-associated protein kinase and linker of activated T-cells, were upregulated in the adult. This study concludes that the normal middle ear immune system changes with age. Genes related to the innate immune system are upregulated in young rats, whereas genes related to the adaptive immune system are upregulated in adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rosenfeld RM, Kay D (2014) Natural history of untreated otitis media. In: Rosenfeld RM, Bluestone CD (eds) Evidence-based otitis media, 2nd edn. BC Decker, Hamilton, pp 180–198

    Google Scholar 

  2. Teele DW, Klein JO, Rosner B (1989) Epidemiology of otitis media during the first seven years of life in children in greater Boston: a prospective, cohort study. J Infect Dis 160:83–94

    Article  PubMed  CAS  Google Scholar 

  3. Fusunyan RD, Nanthakumar NN, Baldeon ME et al (2001) Evidence for an innate immune response in the immature human intestine: toll-like receptors on fetal enterocytes. Pediatr Res 49:589–593

    Article  PubMed  CAS  Google Scholar 

  4. MacDonald TT, Spencer J (1994) Ontogeny of the gut-associated lymphoid system in man. Acta Paediatr Suppl 83:3–5

    Article  PubMed  CAS  Google Scholar 

  5. Perkkio M, Savilahti E (1980) Time of appearance of immunoglobulin-containing cells in the mucosa of the neonatal intestine. Pediatr Res 14:953–955

    Article  PubMed  CAS  Google Scholar 

  6. Bridges RA, Condie RM, Zak SJ et al (1959) The morphologic basis of antibody formation development during the neonatal period. J Lab Clin Med 53:331–357

    PubMed  CAS  Google Scholar 

  7. Harju K, Glumoff V, Hallman M (2001) Ontogeny of Toll-like receptors Tlr2 and Tlr4 in mice. Pediatr Res 49:81–83

    Article  PubMed  CAS  Google Scholar 

  8. Takemura T, Eishi Y (1985) Distribution of secretory component and immunoglobulins in the developing lung. Am Rev Respir Dis 131:125–130

    PubMed  CAS  Google Scholar 

  9. Thrane PS, Rognum TO, Brandtzaeg P (1991) Ontogenesis of the secretory immune system and innate defence factors in human parotid glands. Clin Exp Immunol 86:342–348

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Krishnan S, Craven M, Welliver RC et al (2003) Differences in participation of innate and adaptive immunity to respiratory syncytial virus in adults and neonates. J Infect Dis 188:433–439

    Article  PubMed  Google Scholar 

  11. Mogi G, Maeda S, Watanabe N (1980) The development of mucosal immunity in guinea pig middle ears. Int J Pediatr Otorhinolaryngol 1:331–349

    Article  PubMed  CAS  Google Scholar 

  12. Gentleman RC, Carey VJ, Bates DM et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dai M, Wang P, Boyd AD (2005) Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. Nucleic Acids Res 33:e175

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wu Z, Irizarry R, Gentleman R et al (2004) A model-based background adjustment for oligonucleotide expression arrays. J Am Stat Assoc 99:909–917

    Article  Google Scholar 

  15. Calza S, Valentini D, Pawitan Y (2008) Normalization of oligonucleotide arrays based on the least-variant set of genes. BMC Bioinformatics 9:140

    Article  PubMed  PubMed Central  Google Scholar 

  16. Calza S, Raffelsberger W, Ploner A (2007) Filtering genes to improve sensitivity in oligonucleotide microarray data analysis. Nucleic Acids Res 35:e102

    Article  PubMed  PubMed Central  Google Scholar 

  17. Friis M, Martin-Bertelsen T, Friis-Hansen L et al (2011) Gene expression of the endolymphatic sac. Acta Otolaryngol 131:1257–1263

    Article  PubMed  CAS  Google Scholar 

  18. Nielsen M, Martin-Bertelsen T, Friis M et al (2014) Bone signaling in middle ear development: a genome-wide differential expression analysis. Anat Rec (Hoboken) 297:2349–2355

    Article  CAS  Google Scholar 

  19. Sohnle PG, Collins-Lech C, Wiessner JH (1991) Antimicrobial activity of an abundant calcium-binding protein in the cytoplasm of human neutrophils. J Infect Dis 163:187–192

    Article  PubMed  CAS  Google Scholar 

  20. Nisapakultorn K, Ross KF, Herzberg MC (2001) Calprotectin expression inhibits bacterial binding to mucosal epithelial cells. Infect Immun 69:3692–3696

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Cornish CJ, Devery JM, Poronnik P et al (1996) S100 protein CP-10 stimulates myeloid cell chemotaxis without activation. J Cell Physiol 166:427–437

    Article  PubMed  CAS  Google Scholar 

  22. Vogl T, Tenbrock K, Ludwig S et al (2007) Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat Med 13:1042–1049

    Article  PubMed  CAS  Google Scholar 

  23. Kerschner JE, Horsey E, Ahmed A et al (2009) Gene expression differences in infected and noninfected middle ear complementary DNA libraries. Arch Otolaryngol Head Neck Surg 135:33–39

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lehrer RI, Bevins CL, Ganz T (2004) Defensins and other antimicrobial peptides. In: Mestecky J, Bienstock J, Lamm ME et al (eds) Mucosal immunology, 3rd edn. AcademicPress, New York, pp 95–110

    Google Scholar 

  25. Yang D, Chertov O, Oppenheim JJ (2001) The role of mammalian antimicrobial peptides and proteins in awakening of innate host defenses and adaptive immunity. Cell Mol Life Sci 58:978–989

    Article  PubMed  CAS  Google Scholar 

  26. Jin SD, Gan-Undram S, Jin KS (2006) Expression of beta-defensins in the tubotympanum of experimental otitis media. Acta Otolaryngol 126:1040–1045

    Article  Google Scholar 

  27. Ouellette AJ, Lualdi JC (1990) A novel mouse gene family coding for cationic, cysteine-rich peptides. Regulation in small intestine and cells of myeloid origin. J Biol Chem 265:9831–9837

    PubMed  CAS  Google Scholar 

  28. Weiss A, Stobo JD (1984) Requirement for the coexpression of T3 and the T cell antigen receptor on a malignant human T cell line. J Exp Med 160:1284–1299

    Article  PubMed  CAS  Google Scholar 

  29. Weiss A, Imboden J, Hardy K et al (1986) The role of the T3/antigen receptor complex in T-cell activation. Annu Rev Immunol 4:593–619

    Article  PubMed  CAS  Google Scholar 

  30. Elder ME, Lin D, Clever J et al (1994) Human severe combined immunodeficiency due to a defect in ZAP-70, a T cell tyrosine kinase. Science 264:1596–1599

    Article  PubMed  CAS  Google Scholar 

  31. Isakov N, Wange RL, Burgess WH (1995) ZAP-70 binding specificity to T cell receptor tyrosine-based activation motifs: the tandem SH2 domains of ZAP-70 bind distinct tyrosine-based activation motifs with varying affinity. J Exp Med 181:375–380

    Article  PubMed  CAS  Google Scholar 

  32. Zhang W, Sloan-Lancaster J, Kitchen J et al (1998) LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell 92:83–92

    Article  PubMed  CAS  Google Scholar 

  33. Zhang W, Sommers CL, Burshtyn DN et al (1999) Essential role of LAT in T cell development. Immunity 10:323–332

    Article  PubMed  CAS  Google Scholar 

  34. Czerkinsky C, Holmgren J (2012) Mucosal delivery routes for optimal immunization: targeting immunity to the right tissues. Curr Top Microbiol Immunol 354:1–18

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Danish Society for ORL HNS. The authors thank Klaus Qvortrup, Copenhagen Ear Research Centre, University of Copenhagen, Denmark.

Conflict of interest

All authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle Christine Nielsen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nielsen, M.C., Friis, M., Martin-Bertelsen, T. et al. The middle ear immune defense changes with age. Eur Arch Otorhinolaryngol 273, 81–86 (2016). https://doi.org/10.1007/s00405-015-3493-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-015-3493-0

Keywords

Navigation