Skip to main content
Log in

Pattern of hearing loss following cochlear implantation

  • Otology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Cochlear implantation is associated with deterioration in hearing. Despite the fact that the damage is presumed to be of sensory origin, residual hearing is usually assessed by air-conduction thresholds alone. This study sought to determine if surgery may cause changes in air- and bone-conduction thresholds producing a mixed-type hearing loss. The sample included 18 patients (mean age 37 years) with an air–bone gap of 10 dB over three consecutive frequencies and measurable masked and reliable bone-conduction thresholds of operated and non-operated ears who underwent cochlear implant surgery. All underwent comprehensive audiologic and otologic assessment and imaging before and after surgery. The air–bone gap in the treated ears was 17–41 dB preoperatively and 13–59 dB postoperatively over 250–4,000 Hz. Air-conduction thresholds in the treated ears significantly deteriorated after surgery, by a mean of 10–21 dB. Bone-conduction levels deteriorated nonsignificantly by 0.8–7.5 dB. The findings indicate that the increase in air-conduction threshold after cochlear implantation accounts for most of the postoperative increase in the air–bone gap. Changes in the mechanics of the inner ear may play an important role. Further studies in larger samples including objective measures of inner ear mechanics may add information on the source of the air–bone gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Roland PS, Wright CG (2006) Surgical aspects of cochlear implantation: mechanism of insertional trauma. Adv Otorhinolaryngol 64:11–30 (Review)

    PubMed  Google Scholar 

  2. Li PM, Somdas MA, Eddington DK, Nadol JB Jr (2007) Analysis of intracochlear new bone and fibrous tissue formation in human subjects with cochlear implants. Ann Otol Rhinol Laryngol 116(10):731–738

    Article  PubMed  Google Scholar 

  3. Balkany TJ, Connell SS, Hodges AV, Payne SL, Telischi FF, Eshraghi AA, Angeli SI, Germani R, Messiah S, Arheart KL (2006) Conservation of residual acoustic hearing after cochlear implantation. Otol Neurotol 27(8):1083–1088

    Article  PubMed  Google Scholar 

  4. Eshraghi AA, Polak M, He J, Telischi FF, Balkany TJ, Van De Water TR (2005) Pattern of hearing loss in a rat model of cochlear implantation trauma. Otol Neurotol 26(3):442–447 (discussion 447)

    Article  PubMed  Google Scholar 

  5. Skarzynski H, Lorens A, Zgoda M, Piotrowska A, Skarzynski PH, Szkielkowska A (2011) Atraumatic round window deep insertion of cochlear electrodes. Acta Otolaryngol 131(7):740–749

    Article  PubMed  Google Scholar 

  6. Attias J, Ulanovski D, Shemesh R, Kornreich L, Nageris B, Preis M, Peled M, Efrati M, Raveh E (2012) Air–bone gap component of inner-ear origin in audiograms of cochlear implant candidates. Otol Neurol 33(4):512–517

    Article  Google Scholar 

  7. Jia H, Venail F, Piron JP, Batrel C, Pelliccia P, Artières F, Uziel A, Mondain M (2011) Effect of surgical technique on electrode impedance after cochlear implantation. Ann Otol Rhinol Laryngol 120(8):529–534

    Article  PubMed  Google Scholar 

  8. American National Standards Institute (ANSI) (1996) Specifications for audiometers (ANSI S3.6-1996). American National Standards Institute, New York

    Google Scholar 

  9. Munro KJ, Contractor A (2010) Inter-aural attenuation with insert earphones. Int J Audiol 49(10):799–801

    Article  PubMed  Google Scholar 

  10. Hood JD (1960) The principles and practice of bone conduction audiometry: a review of the present position. Laryngoscope 70(9):1211–1228

    Article  CAS  PubMed  Google Scholar 

  11. Jackler RK, Luxford WM, House WF (1987) Congenital malformations of the inner ear: a classification based on embryogenesis. Laryngoscope 97(3 Pt 2 Suppl 40):2–14

    CAS  PubMed  Google Scholar 

  12. Antonelli PJ, Varela AE, Mancuso AA (1999) Diagnostic yield of high-resolution computed tomography for pediatric sensorineural hearing loss. Laryngoscope 109(10):1642–1647

    Article  CAS  PubMed  Google Scholar 

  13. Mafong DD, Shin EJ, Lalwani AK (2002) Use of laboratory evaluation and radiologic imaging in the diagnostic evaluation of children with sensorineural hearing loss. Laryngoscope 112(1):1–7

    Article  PubMed  Google Scholar 

  14. Shim HJ, Shin JE, Chung JW, Lee KS (2006) Inner ear anomalies in cochlear implantees: importance of radiologic measurements in the classification. Otol Neurotol 27(6):831–837

    Article  PubMed  Google Scholar 

  15. Verbist BM, Mancuso AM, Antonelli PJ (2011) Developmental abnormalities of the inner ear and cranial nerve VIII. In: Mancuso AA, Hanafee WN (eds) Head and Neck Radiology. Wolters Kluwer, Philadelphia, pp 669–689

    Google Scholar 

  16. Attias J, Shemesh R, Hadar T, Nageris BI (2010) Animal model of cochlear third window in the scala vestibuli or scala tympani. Otol Neurotol 31(6):985–990

    Article  PubMed  Google Scholar 

  17. Attias J, Nageris BI, Shemesh R, Shvero J, Preis M (2011) Superior canal dehiscence effect on hearing thresholds: Animal model. Otolaryngol Head Neck Surg 145(4):648–653

    Article  PubMed  Google Scholar 

  18. Preis M, Attias J, Hadar T, Nageris BI (2009) Cochlear third window in the scala vestibuli: an animal model. Otol Neurotol 30(5):657–660

    Article  PubMed  Google Scholar 

  19. Nageris B, Attias J, Shemesh R, Hadar T, Preis M (2010) A third window of the posterior semicircular canal—an animal model. Laryngoscope 120(5):1034–1037

    PubMed  Google Scholar 

  20. Nakashima T, Ueda H, Furuhashi A, Sato E, Asahi K, Naganawa S, Beppu R (2000) Air–bone gap and resonant frequency in large vestibular aqueduct syndrome. Am J Otol 21(5):671–674

    CAS  PubMed  Google Scholar 

  21. Shirazi A, Fenton JE, Fagan PA (1994) Large vestibular aqueduct syndrome and stapes fixation. J Laryngol Otol 108(11):989–990

    Article  CAS  PubMed  Google Scholar 

  22. Hirai S, Cureoglu S, Schachern PA, Hayashi H, Paparella MM, Harada T (2006) Large vestibular aqueduct syndrome: a human temporal bone study. Laryngoscope 116(11):2007–2011

    Article  PubMed  Google Scholar 

  23. Govaerts PJ, Casselman J, Daemers K, De Ceulaer G, Somers T, Offeciers FE (1999) Audiological findings in large vestibular aqueduct syndrome. Int J Pediatr Otorhinolaryngol 51(3):157–164

    Article  CAS  PubMed  Google Scholar 

  24. Mamikoglu B, Bentz B, Wiet RJ (2000) Large vestibular aqueduct syndrome presenting with mixed hearing loss and an intact mobile ossicular chain. Otorhinolaryngol Nova 10:204–206

    Article  Google Scholar 

  25. Mimura T, Sato E, Sugiura M, Yoshino T, Naganawa S, Nakashima J (2005) Hearing loss in patients with enlarged vestibular aqueduct: air–bone gap and audiological Bing test. Int J Audiol 44(8):466–469

    Article  PubMed  Google Scholar 

  26. Merchant SN, Nakajima HH, Halpin C, Nadol JB Jr, Lee DJ, Innis WP, Curtin H, Rosowski JJ (2007) Clinical investigation and mechanism of air–bone gaps in large vestibular aqueduct syndrome. Ann Otol Rhinol Laryngol 116(7):532–541

    Article  PubMed Central  PubMed  Google Scholar 

  27. Mikulec AA, McKenna MJ, Ramsey MJ, Rosowski JJ, Herrmann BS, Rauch SD (2004) Superior semicircular canal dehiscence presenting as conductive hearing loss without vertigo. Otol Neurotol 25:121–129

    Article  PubMed  Google Scholar 

  28. Stenfelt S, Goode RL (2005) Bone-conducted sound: physiological and clinical aspects. Otol Neurotol 26(6):1245–1261 (Review)

    Article  PubMed  Google Scholar 

  29. Fayad JN, Makarem AO, Linthicum FH Jr (2009) Histopathologic assessment of fibrosis and new bone formation in implanted human temporal bones using 3D reconstruction. Otolaryngol Head Neck Surg 141(2):247–252

    Article  PubMed Central  PubMed  Google Scholar 

  30. Huber AM, Hoon SJ, Sharouz B, Daniel B, Albrecht E (2010) The influence of a cochlear implant electrode on the mechanical function of the inner ear. Otol Neurotol 31(3):512–518

    Article  PubMed  Google Scholar 

  31. Donnelly N, Bibas A, Jiang D, Bamiou DE, Santulli C, Jeronimidis G, Fitzgerald O’Connor A (2009) Effect of cochlear implant electrode insertion on middle-ear function as measured by intra-operative laser Doppler vibrometry. J Laryngol Otol 123(7):723–729

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

No funding was received for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eyal Raveh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raveh, E., Attias, J., Nageris, B. et al. Pattern of hearing loss following cochlear implantation. Eur Arch Otorhinolaryngol 272, 2261–2266 (2015). https://doi.org/10.1007/s00405-014-3184-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-014-3184-2

Keywords

Navigation