European Archives of Oto-Rhino-Laryngology

, Volume 271, Issue 7, pp 1987–1997 | Cite as

Displacement of oropharyngeal structures during suction-swallowing cycles

  • W. Engelke
  • J. Glombek
  • M. Psychogios
  • S. Schneider
  • D. Ellenberger
  • P. SantanderEmail author


Suction ability plays an important role in supporting oral nutrition and needs special care following neurological disorders and tumor-associated defects. However, the details of suction are still poorly understood. The present study evaluates displacement of orofacial structures during suction and deglutition based on manometric controlled MRI. Nine healthy subjects were scanned wearing an intraoral mouthpiece for water intake by suction and subsequent swallowing. Suction-swallowing cycles were identified by intraoral negative pressure. Midsagittal MRI slices (3 T; temporal resolution 0.53 s) were analyzed at rest, suction and pharyngeal swallowing. The mandibular displacement was measured as the distance between the anterior nasal spine and the inferior point of the mandible. Following areas were defined: subpalatal compartment (SCA), retrolingual (RLA), epipharyngeal (EPA) and mouth floor area (MFA). During rest, an average distance of 7 cm was observed between the mandibular measurement points. The measured SCA was 3.67 cm2, the RLA 6.98 cm2, the EPA 9.00 cm2 and the MFA 15.21 cm2 (average values). At the end of suction, the mandibular distance reduces (to 6.88 cm), the SCA increases significantly (to 5.96 cm2; p = 0.0002), the RLA decreases (to 6.45 cm2), the EPA increases (to 10.59 cm2) and the MFA decreases (to 15.02 cm2). During deglutition, the mandible lifted significantly (to 6.81 cm; p = 0.0276), the SCA reduced to zero, the RLA was not measurable, the EPA reduces significantly (to 3.01 cm2; p < 0.0001) and the MFA increases (to 16.36 cm2). According to these observations, a combined displacement of the tongue in an anteroposterior direction with active tongue dorsum—velum contact appears to be the predominant activity during suction and responsible for the expansion of the subpalatal area.


Suction Swallowing Dynamic MRI Dysphagia 


Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Matsuo K, Palmer JB (2009) Coordination of mastication, swallowing and breathing. Jpn Dent Sci Rev 45(1):31–40. doi: 10.1016/j.jdsr.2009.03.004 PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Logemann JA (1988) Swallowing physiology and pathophysiology. Otolaryngol Clin N Am 21(4):613–623Google Scholar
  3. 3.
    Gingrich LL, Stierwalt JA, Hageman CF, LaPointe LL (2012) Lingual propulsive pressures across consistencies generated by the anteromedian and posteromedian tongue by healthy young adults. J Speech Lang Hear Res 55(3):960–972. doi: 10.1044/1092-4388(2011/10-0357 PubMedCrossRefGoogle Scholar
  4. 4.
    Delaney AL, Arvedson JC (2008) Development of swallowing and feeding: prenatal through first year of life. Dev Disabil Res Rev 14(2):105–117. doi: 10.1002/ddrr.16 PubMedCrossRefGoogle Scholar
  5. 5.
    Thexton AJ, Crompton AW, Owerkowicz T, German RZ (2004) Correlation between intraoral pressures and tongue movements in the suckling pig. Arch Oral Biol 49(7):567–575. doi: 10.1016/j.archoralbio.2004.02.002 PubMedCrossRefGoogle Scholar
  6. 6.
    Wein B, Angerstein W, Klajman S (1993) Search movements of the tongue in speech apraxia: imaging with ultrasound and pseudo-3D reconstruction. Nervenarzt 64(2):143–145PubMedGoogle Scholar
  7. 7.
    Kieser J, Singh B, Swain M, Ichim I, Waddell JN, Kennedy D, Foster K, Livingstone V (2008) Measuring intraoral pressure: adaptation of a dental appliance allows measurement during function. Dysphagia 23(3):237–243. doi: 10.1007/s00455-007-9126-z PubMedCrossRefGoogle Scholar
  8. 8.
    Kennedy D, Kieser J, Bolter C, Swain M, Singh B, Waddell JN (2010) Tongue pressure patterns during water swallowing. Dysphagia 25(1):11–19. doi: 10.1007/s00455-009-9223-2 PubMedCrossRefGoogle Scholar
  9. 9.
    Nilsson H, Ekberg O, Olsson R, Kjellin O, Hindfelt B (1996) Quantitative assessment of swallowing in healthy adults. Dysphagia 11(2):110–116PubMedCrossRefGoogle Scholar
  10. 10.
    Engelke W, Jung K, Knösel M (2011) Intra-oral compartment pressures: a biofunctional model and experimental measurements under different conditions of posture. Clin Oral Investig 15(2):165–176. doi: 10.1007/s00784-009-0367-0 PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Santander P, Engelke W, Olthoff A, Völter C (2013) Intraoral pressure patterns during swallowing. Eur Arch Otorhinolaryngol 270(3):1019–1025. doi: 10.1007/s00405-012-2299-6 PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Perie S, Laccourreye L, Flahault A, Hazebroucq V, Chaussade S, St Guily JL (1998) Role of videoendoscopy in assessment of pharyngeal function in oropharyngeal dysphagia: comparison with videofluoroscopy and manometry. Laryngoscope 108(11 Pt 1):1712–1716PubMedCrossRefGoogle Scholar
  13. 13.
    Logemann JA, Rademaker AW, Pauloski BR, Ohmae Y, Kahrilas PJ (1998) Normal swallowing physiology as viewed by videofluoroscopy and videoendoscopy. Folia Phoniatr Logop 50(6):311–319 (pii 21473)PubMedCrossRefGoogle Scholar
  14. 14.
    Wu CH, Hsiao TY, Chen JC, Chang YC, Lee SY (1997) Evaluation of swallowing safety with fiberoptic endoscope: comparison with videofluoroscopic technique. Laryngoscope 107(3):396–401PubMedCrossRefGoogle Scholar
  15. 15.
    Butler SG, Stuart A, Kemp S (2009) Flexible endoscopic evaluation of swallowing in healthy young and older adults. Ann Otol Rhinol Laryngol 118(2):99–106PubMedGoogle Scholar
  16. 16.
    Moriniere S, Hammoudi K, Marmouset F, Bakhos D, Beutter P, Patat F (2013) Ultrasound analysis of the upper esophageal sphincter during swallowing in the healthy subject. Eur Ann Otorhinolaryngol Head Neck Dis 130(6):321–325. doi: 10.1016/j.anorl.2012.01.008 PubMedCrossRefGoogle Scholar
  17. 17.
    Galén S, Jost-Brinkmann PG (2010) B-mode and M-mode ultrasonography of tongue movements during swallowing. J Orofac Orthop 71(2):125–135. doi: 10.1007/s00056-010-9928-8 PubMedCrossRefGoogle Scholar
  18. 18.
    Hsiao MY, Chang YC, Chen WS, Chang HY, Wang TG (2012) Application of ultrasonography in assessing oropharyngeal dysphagia in stroke patients. Ultrasound Med Biol 38(9):1522–1528. doi: 10.1016/j.ultrasmedbio.2012.04.017 PubMedCrossRefGoogle Scholar
  19. 19.
    Vaiman M, Eviatar E, Segal S (2004) Surface electromyographic studies of swallowing in normal subjects: a review of 440 adults. Report 2. Quantitative data: amplitude measures. Otolaryngol Head Neck Surg 131(5):773–780. doi: 10.1016/j.otohns.2004.03.014 PubMedCrossRefGoogle Scholar
  20. 20.
    Steele CM, Van Lieshout PH (2004) Use of electromagnetic midsagittal articulography in the study of swallowing. J Speech Lang Hear Res 47(2):342–352. doi: 10.1044/1092-4388(2004/024 PubMedCrossRefGoogle Scholar
  21. 21.
    Engelke W, Schönle PW (1991) Electromagnetic articulography: a new method for studying the motor function of the velum palatinum. Folia Phoniatr (Basel) 43(3):147–152CrossRefGoogle Scholar
  22. 22.
    Anagnostara A, Stoeckli S, Weber OM, Kollias SS (2001) Evaluation of the anatomical and functional properties of deglutition with various kinetic high-speed MRI sequences. J Magn Reson Imaging 14(2):194–199. doi: 10.1002/jmri.1172 PubMedCrossRefGoogle Scholar
  23. 23.
    Panebianco V, Ruoppolo G, Pelle G, Schettino I, Roma R, Bernardo S, De Vincentiis C, Longo L, Passariello R (2010) Morpho-functional patterns of physiologic oropharyngeal swallowing evaluated with dynamic fast MRI. Eur Arch Otorhinolaryngol 267(9):1461–1466. doi: 10.1007/s00405-010-1232-0 PubMedCrossRefGoogle Scholar
  24. 24.
    Zhang S, Olthoff A, Frahm J (2012) Real-time magnetic resonance imaging of normal swallowing. J Magn Reson Imaging 35(6):1372–1379. doi: 10.1002/jmri.23591 PubMedCrossRefGoogle Scholar
  25. 25.
    Nilsson H, Ekberg O, Hindfelt B (1995) Oral function test for monitoring suction and swallowing in the neurologic patient. Dysphagia 10(2):93–100PubMedCrossRefGoogle Scholar
  26. 26.
    Nilsson H, Ekberg O, Olsson R, Hindfelt B (1998) Dysphagia in stroke: a prospective study of quantitative aspects of swallowing in dysphagic patients. Dysphagia 13(1):32–38PubMedCrossRefGoogle Scholar
  27. 27.
    Dodds WJ, Stewart ET, Logemann JA (1990) Physiology and radiology of the normal oral and pharyngeal phases of swallowing. Am J Roentgenol 154(5):953–963. doi: 10.2214/ajr.154.5.2108569 CrossRefGoogle Scholar
  28. 28.
    Finkelstein Y, Talmi YP, Kravitz K, Bar-Ziv J, Nachmani A, Hauben DJ, Zohar Y (1991) Study of the normal and insufficient velopharyngeal valve by the “Forced Sucking Test”. Laryngoscope 101(11):1203–1212. doi: 10.1288/00005537-199111000-00008 PubMedCrossRefGoogle Scholar
  29. 29.
    German RZ, Crompton AW, Levitch LC, Thexton AJ (1992) The mechanism of suckling in two species of infant mammal: miniature pigs and long-tailed macaques. J Exp Zool 261(3):322–330. doi: 10.1002/jez.1402610311 PubMedCrossRefGoogle Scholar
  30. 30.
    Moral A, Bolibar I, Seguranyes G, Ustrell JM, Sebastia G, Martinez-Barba C, Rios J (2010) Mechanics of sucking: comparison between bottle feeding and breastfeeding. BMC Pediatr 10:6. doi: 10.1186/1471-2431-10-6 PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Amin MR, Lazarus CL, Pai VM, Mulholland TP, Shepard T, Branski RC, Wang EY (2012) 3 Tesla turbo-FLASH magnetic resonance imaging of deglutition. Laryngoscope 122(4):860–864. doi: 10.1002/lary.22496 PubMedCrossRefGoogle Scholar
  32. 32.
    Nilsson H, Ekberg O, Olsson R, Hindfelt B (1996) Quantitative aspects of swallowing in an elderly nondysphagic population. Dysphagia 11(3):180–184PubMedCrossRefGoogle Scholar
  33. 33.
    Pearson WG Jr, Hindson DF, Langmore SE, Zumwalt AC (2013) Evaluating swallowing muscles essential for hyolaryngeal elevation by using muscle functional magnetic resonance imaging. Int J Radiat Oncol Biol Phys 85(3):735–740. doi: 10.1016/j.ijrobp.2012.07.2370 PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Amin MR, Achlatis S, Lazarus CL, Branski RC, Storey P, Praminik B, Fang Y, Sodickson DK (2013) Dynamic magnetic resonance imaging of the pharynx during deglutition. Ann Otol Rhinol Laryngol 122(3):145–150PubMedCentralPubMedGoogle Scholar
  35. 35.
    Bae Y, Kuehn DP, Conway CA, Sutton BP (2011) Real-time magnetic resonance imaging of velopharyngeal activities with simultaneous speech recordings. Cleft Palate Craniofac J 48(6):695–707. doi: 10.1597/09-158 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • W. Engelke
    • 1
  • J. Glombek
    • 1
  • M. Psychogios
    • 2
  • S. Schneider
    • 3
  • D. Ellenberger
    • 3
  • P. Santander
    • 1
    Email author
  1. 1.Department of Oral and Maxillofacial Surgery, Center for Dentistry, Oral Medicine and Craniomaxillofacial SurgeryUniversity of GöttingenGöttingenGermany
  2. 2.Department of Diagnostic and Interventional Neuroradiology, Center for RadiologyUniversity of GöttingenGöttingenGermany
  3. 3.Department of Medical Statistics, Center for Informatics, Statistics and EpidemiologyUniversity of GöttingenGöttingenGermany

Personalised recommendations