European Archives of Oto-Rhino-Laryngology

, Volume 272, Issue 1, pp 29–34 | Cite as

Effect of caffeic acid phenethyl ester on myringosclerosis development in the tympanic membrane of rat

  • Vefa Kinis
  • Musa Ozbay
  • Ulas Alabalik
  • Aylin Gul
  • Beyhan Yilmaz
  • Fazi Emre Ozkurt
  • Engin Sengul
  • Ismail Topcu


Myringosclerosis is hyalinization and calcification of certain areas of the tympanic membrane, especially the fibrous lamina propria layer and appears as white sclerotic lesions. Ventilation tube insertion is one of the most performed operations in the pediatric otorhinolaryngology practice to treat chronic otitis media with effusion. Myringosclerosis is a very common sequela of ventilation tube insertion. In this experimental study, our aim was to show the histopathological effects of caffeic acid phenethyl ester on myringosclerosis development in rat tympanic membrane after myringotomy. The rats were randomly categorized into four experimental groups including the comparison group (n = 4), non-treated group (n = 7), the saline (control) group (n = 7), the caffeic acid phenethyl ester group (n = 7). Non-treated group did not receive any treatment for 15 days. Saline (2.5 mL/kg, intraperitoneal) was administered to the third group once a day for 15 days. Fourth group received caffeic acid phenethyl ester intraperitoneally once a day at a dose of 10 μmol/kg for 15 days. Myringotomy was performed on the right tympanic membrane of all rats except comparison group using a sterile pick with the help of an operating microscope. Histopathological examination of myringosclerosis formation was done by a pathologist under light microscope. In histopathological analysis of groups, the severity of inflammation was milder in caffeic acid phenethyl ester group compared to non-treated and saline groups (p < 0.05). There was less myringosclerotic plaques in caffeic acid phenethyl ester group than in non-treated and saline groups (p < 0.05). TM thickness measurements were very close to each other in non-treated and saline groups. The tympanic membrane thickness of caffeic acid phenethyl ester group was much thinner than the other two groups (p < 0.05). Caffeic acid phenethyl ester decreases inflammation severity and the formation of myringosclerotic plaques. These two effects resulted in thinner tympanic membranes of rats which were treated with caffeic acid phenethyl ester. As a result, caffeic acid phenethyl ester has potential preventive effects on myringosclerosis development after myringotomy and ventilation tube insertion.


Caffeic acid phenethyl ester Myringosclerosis Ventilation tube Tympanic membrane Inflammation Rat 


  1. 1.
    Albiin N, Hellström S, Salen B, Stenfors LE, Söderberg O (1983) The anatomy of the eustachian tube in the rat: a macro-and microscopical study. Anat Rec 207:513–521PubMedCrossRefGoogle Scholar
  2. 2.
    Mattsson C, Marklund SL, Hellström S (1997) Application of oxygen free radical scavengers to diminish the occurrence of myringosclerosis. Ann Otol Rhinol Laryngol 106:513–518PubMedCrossRefGoogle Scholar
  3. 3.
    Mattsson C, Stierna P, Hellstrom S (2000) Treatment with dexamethasone arrests the development of myringosclerosis after myringotomy. Am J Otol 21:804–808PubMedGoogle Scholar
  4. 4.
    Özcan C, Görür K, Cinel L, Talas DU, Unal M, Cinel I (2002) The inhibitory effect of topical N-acetylcysteine application on myringosclerosis in perforated rat tympanic membrane. Int J Pediatr Otorhinolaryngol 63:179–184PubMedCrossRefGoogle Scholar
  5. 5.
    Tos M, Bonding P, Paulsen G (1983) Tympanosclerosis of the drum in secretory otitis media after insertion of grommets: a prospective, comparative study. J Laryngol Otol 97:489–496PubMedCrossRefGoogle Scholar
  6. 6.
    Mattsson C, Magnuson K, Hellström S (1995) An increased oxygen concentration causes myringosclerosis in traumatized tympanic membranes. Experimental study. Ann Otol Rhinol Laryngol 104:625–632PubMedCrossRefGoogle Scholar
  7. 7.
    Uneri C, Sari M, Akboğa J, Yüksel M (2006) Vitamin E-coated tympanostomy tube insertion decreases the quantity of free radicals in tympanic membrane. Laryngoscope 116:140–143PubMedCrossRefGoogle Scholar
  8. 8.
    Mattsson C, Hellström S (1997) Inhibition of the development of myringosclerosis by local administration of fenspiride, an anti-inflammatory drug. Eur Arch Otorhinolaryngol 254:425–429PubMedCrossRefGoogle Scholar
  9. 9.
    Asiri S, Hasham A, al Anazy F, Zakzouk S, Banyar A (1999) Tympanosclerosis: review of literature and incidence among patients with middle-ear infection. J Laryngol Otol 113:1076–1080PubMedCrossRefGoogle Scholar
  10. 10.
    Paparella MM, Schachern P (1994) New developments in treating otitis media. Ann Otol Rhinol Laryngol Suppl 163:7–10PubMedGoogle Scholar
  11. 11.
    Liao HF, Chen YY, Liu JJ, Hsu ML, Shieh HJ, Liao HJ, Shieh CJ, Shiao MS, Chen YJ (2003) Inhibitory effect of caffeic acid phenethyl ester on angiogenesis, tumor invasion, and metastasis. J Agric Food Chem 51:7907–7912PubMedCrossRefGoogle Scholar
  12. 12.
    Gokalp O, Uz E, Cicek E, Yilmaz HR, Ozer MK, Altunbas A, Ozcelik N (2006) Ameliorating role of caffeic acid phenethyl ester (CAPE) against isoniazid-induced oxidative damage in red blood cells. Mol Cell Biochem 290:55–59PubMedCrossRefGoogle Scholar
  13. 13.
    Sud’ina GF, Mirzoeva OK, Pushkareva MA, Korshunova GA, Sumbatyan NV, Varfolomeev SD (1993) Caffeic acid phenethyl ester as a lipoxygenase inhibitor with antioxidant properties. FEBS Lett 329:21–24PubMedCrossRefGoogle Scholar
  14. 14.
    Institute of Laboratory Animal Research. Commission on Life Sciences. National Research Council (1996) The guide for the care and use of laboratory animals, 7th edn. National Academy of Sciences, Washington, DCGoogle Scholar
  15. 15.
    Banerjee T, Kuypers FA (2004) Reactive oxygen species and phosphatidylserine externalization in murine sickle red cells. Br J Haematol 124:392–402CrossRefGoogle Scholar
  16. 16.
    Bhaya MH, Schachern PA, Morizono T, Paparella MM (1993) Pathogenesis of tympanosclerosis. Otolaryngol Head Neck Surg 109:413–420PubMedGoogle Scholar
  17. 17.
    Spratley JE, Hellström SO, Mattsson CK, Pais-Clemente M (2001) Topical ascorbic acid reduces myringosclerosis in perforated tympanic membranes. A study in rat. Ann Otol Rhinol Laryngol 110:585–591PubMedCrossRefGoogle Scholar
  18. 18.
    Song JJ, Kwon SK, Cho CG, Park SW (2007) The effect of caffeic acid phenethyl ester on the prevention of experimentally induced myringosclerosis. Int J Pediatr Otorhinolaryngol 71:1287–1291PubMedCrossRefGoogle Scholar
  19. 19.
    Dawes PJ, Bingham BJ, Ryhs R, Griffiths MV (1991) Aspirating middle ear effusions when inserting ventilation tubes: does it influence post-operative otorrhoea, tube obstruction or the development of tympanosclerosis? Clin Otolaryngol Allied Sci 16:457–461PubMedCrossRefGoogle Scholar
  20. 20.
    Wielinga EW, Kerr AG (1993) Tympanosclerosis. Clin Otolaryngol Allied Sci 18:341–349PubMedCrossRefGoogle Scholar
  21. 21.
    Sade J, Luntz M (1993) Dynamic measurements of gas composition in the middle ear II: steady state value. Acta Otolaryngol 113:353–357PubMedCrossRefGoogle Scholar
  22. 22.
    Felding JU, Rasmussen JB, Lildholdt T (1987) Gas composition of the normal and the ventilated middle ear cavity. Scand J Clin Lab Invest Suppl 186:31–41PubMedCrossRefGoogle Scholar
  23. 23.
    Mattsson C, Carlsson L, Marklund SL, Hellström S (1997) Myringotomized mice develop myringosclerosis in the pars flaccida and not in the pars tensa. Laryngoscope 107:200–205PubMedCrossRefGoogle Scholar
  24. 24.
    Fadillioglu E, Oztas E, Erdogan H, Yagmurca M, Sogut S, Ucar M, Irmak MK (2004) Protective effects of caffeic acid phenethyl ester on doxorubicin-induced cardiotoxicity in rats. J Appl Toxicol 24:47–52PubMedCrossRefGoogle Scholar
  25. 25.
    Bakır S, Özbay M, Gün R, Yorgancılar E, Kınış V, Keleş A, Abakay A, Gökalp O, Topçu İ (2013) The protective role of caffeic acid phenethyl ester against streptomycin ototoxicity. Am J Otolaryngol 34:16–21PubMedCrossRefGoogle Scholar
  26. 26.
    Irmak MK, Fadillioglu E, Sogut S, Erdogan H, Gulec M, Ozer M, Yagmurca M, Gozukara ME (2003) Effects of caffeic acid phenethyl ester and alpha-tocopherol on reperfusion injury in rat brain. Cell Biochem Funct 21:283–289PubMedCrossRefGoogle Scholar
  27. 27.
    Kazikdas KC, Uguz MZ, Erbil G, Tugyan K, Yilmaz O, Guneli E, Altun Z (2006) The antioxidant effect of alpha-tocopherol in the prevention of experimentally induced myringosclerosis. Otol Neurotol 27:882–886PubMedCrossRefGoogle Scholar
  28. 28.
    Akbaş Y, Pata YS, Görür K, Polat G, Polat A, Ozcan C, Unal M (2003) Hear Res. The effect of l-carnitine on the prevention of experimentally induced myringosclerosis in rats. Hear Res 184:107–112PubMedCrossRefGoogle Scholar
  29. 29.
    Dogan E, Erdag TK, Sarioglu S, Ecevit MC, Ikiz AO, Güneri EA (2011) The preventive effect of N-nitro l-arginine methyl ester in experimentally induced myringosclerosis. Int J Pediatr Otorhinolaryngol 75:1035–1039PubMedCrossRefGoogle Scholar
  30. 30.
    Emir H, Kaptan ZK, Samim E, Sungu N, Ceylan K, Ustun H (2009) The preventive effect of ginkgo biloba extract in myringosclerosis: study in rats. Otolaryngol Head Neck Surg 140:171–176PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Vefa Kinis
    • 1
  • Musa Ozbay
    • 1
  • Ulas Alabalik
    • 2
  • Aylin Gul
    • 1
  • Beyhan Yilmaz
    • 1
  • Fazi Emre Ozkurt
    • 1
  • Engin Sengul
    • 1
  • Ismail Topcu
    • 1
  1. 1.Department of ENT & Head and Neck SurgeryDicle University Medical CollegeDiyarbakirTurkey
  2. 2.Department of PathologyDicle University Medical CollegeDiyarbakirTurkey

Personalised recommendations