Skip to main content

Advertisement

Log in

Prevalence of DFNB1 mutations among cochlear implant users in Slovakia and its clinical implications

  • Otology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Hereditary etiology plays an important role in bilateral profound deafness as a main indication for cochlear implantation. Mutations in DFNB1 locus account for most of the inherited deafness cases in Caucasians. To provide actual data on mutation prevalence among implanted deaf subpopulation, we performed DNA analysis of GJB2 and GJB6 genes in 131 unrelated Slovak cochlear implant users. Eight previously described causal mutations and one probably pathogenic missense variant (c.127G>A) were detected in the GJB2 gene in 58 (44.28 %) subjects. The most common mutation found was c.35delG with frequency 83.02 % of all disease alleles, followed by c.71G>A, c.1-3201G>A, c.313_326del14, c.109G>A, 167delT, c.269T>C, and c.333_334delAA. GJB6 deletion delD13S1830 was identified in only one subject, in double heterozygosity with a GJB6 mutation. Thus, the deafness cause could be clearly attributable to DFNB1 mutations in 36.64 % of the patients examined. In summary, the mutation profile found in our cohort was similar to the mutation spectrum reported for Central European deaf populations. The mutation prevalence in cochlear implant users was, however, almost by 25 % higher than previously established for non-implanted hearing-impaired population in Slovakia. Finally, we also demonstrate a certain variability in deafness onset in patients with causal genotype and coincidence with other risk factors for deafness. Our results underline the importance of genetic tests in all cochlear implant candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zelante L, Gasparini P, Estivill X et al (1997) Connexin26 mutations associated with the most common form of non-syndromic neurosensory autosomal recessive deafness (DFNB1) in Mediterraneans. Hum Mol Genet 6:1605–1609

    Article  CAS  PubMed  Google Scholar 

  2. Maw MA, Allen-Powell DR, Goodey RJ et al (1995) The contribution of the DFNB1 locus to neurosensory deafness in a Caucasian population. Am J Hum Genet 57:629–635

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Snoeckx RL, Huygen PL, Feldmann D et al (2005) GJB2 mutations and degree of hearing loss: a multicenter study. Am J Hum Genet 77:945–957

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Propst EJ, Stockley TL, Gordon KA, Harrison RV, Papsin BC (2006) Ethnicity and mutations in GJB2 (connexin 26) and GJB6 (connexin 30) in a multi-cultural Canadian paediatric Cochlear Implant Program. Int J Pediatr Otorhinolaryngol 70:435–444

    Article  PubMed  Google Scholar 

  5. Danilenko N, Merkulava E, Siniauskaya M et al (2012) Spectrum of genetic changes in patients with non-syndromic hearing impairment and extremely high carrier frequency of 35delG GJB2 mutation in Belarus. PLoS One 7:e36354

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Bhalla S, Sharma R, Khandelwal G, Panda NK, Khullar M (2009) Low incidence of GJB2, GJB6 and mitochondrial DNA mutations in North Indian patients with non-syndromic hearing impairment. Biochem Biophys Res Commun 385:445–448

    Article  CAS  PubMed  Google Scholar 

  7. Godbole K, Hemavathi J, Vaid N, Pandit AN, Sandeep MN, Chandak GR (2010) Low prevalence of GJB2 mutations in non-syndromic hearing loss in Western India. Indian J Otolaryngol Head Neck Surg 62:60–63

    Article  PubMed Central  PubMed  Google Scholar 

  8. Kabahuma RI, Ouyang X, Du LL et al (2011) Absence of GJB2 gene mutations, the GJB6 deletion (GJB6-D13S1830) and four common mitochondrial mutations in nonsyndromic genetic hearing loss in a South African population. Int J Pediatr Otorhinolaryngol 75:611–617

    Article  PubMed  Google Scholar 

  9. Khalifa Alkowari M, Girotto G, Abdulhadi K et al (2012) GJB2 and GJB6 genes and the A1555G mitochondrial mutation are only minor causes of nonsyndromic hearing loss in the Qatari population. Int J Audiol 51:181–185

    Article  CAS  PubMed  Google Scholar 

  10. Fagerheim T, Nilssen O, Raeymaekers P et al (1996) Identification of a new locus for autosomal dominant non-syndromic hearing impairment (DFNA7) in a large Norwegian family. Hum Mol Genet 5:1187–1191

    Article  CAS  PubMed  Google Scholar 

  11. Scott DA, Carmi R, Elbedour K, Yosefsberg S, Stone EM, Sheffield VC (1996) An autosomal recessive nonsyndromic-hearing-loss locus identified by DNA pooling using two inbred Bedouin kindreds. Am J Hum Genet 59:385–391

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Yuan Y, You Y, Huang D et al (2009) Comprehensive molecular etiology analysis of nonsyndromic hearing impairment from typical areas in China. J Transl Med 7:79

    Article  PubMed Central  PubMed  Google Scholar 

  13. Rădulescu L, Mârţu C, Birkenhäger R, Cozma S, Ungureanu L, Laszig R (2012) Prevalence of mutations located at the dfnb1 locus in a population of cochlear implanted children in eastern Romania. Int J Pediatr Otorhinolaryngol 76:90–94

    Article  PubMed  Google Scholar 

  14. Chora JR, Matos TD, Martins JH et al (2010) DFNB1-associated deafness in Portuguese cochlear implant users: prevalence and impact on oral outcome. Int J Pediatr Otorhinolaryngol 74:1135–1139

    Article  PubMed  Google Scholar 

  15. Tarkan O, Sari P, Demirhan O et al (2013) Connexin 26 and 30 mutations in paediatric patients with congenital, non-syndromic hearing loss treated with cochlear implantation in Mediterranean Turkey. J Laryngol Otol 127:33–37

    Article  CAS  PubMed  Google Scholar 

  16. Lustig LR, Lin D, Venick H et al (2004) GJB2 gene mutations in cochlear implant recipients: prevalence and impact on outcome. Arch Otolaryngol Head Neck Surg 130:541–546

    Article  PubMed  Google Scholar 

  17. Pollak A, Mueller-Malesinska M, Skórka A et al (2008) GJB2 and hearing impairment: promoter defects do not explain the excess of monoallelic mutations. J Med Genet 45:607–608

    Article  CAS  PubMed  Google Scholar 

  18. Tang HY, Xia A, Oghalai JS, Pereira FA, Alford RL (2005) High frequency of the IVS2-2A>G DNA sequence variation in SLC26A5, encoding the cochlear motor protein prestin, precludes its involvement in hereditary hearing loss. BMC Med Genet 6:30

    Article  PubMed Central  PubMed  Google Scholar 

  19. http://sift.jcvi.org/. Accessed 29 Jan 2013

  20. http://genetics.bwh.harvard.edu/pph. Accessed 29 Jan 2013

  21. Wu CC, Lee YC, Chen PJ, Hsu CJ (2008) Predominance of genetic diagnosis and imaging results as predictors in determining the speech perception performance outcome after cochlear implantation in children. Arch Pediatr Adolesc Med 162:269–276

    Article  PubMed  Google Scholar 

  22. Kabatova Z, Profant M, Simkova L, Groma M, Nechojdomova D (2009) Cochlear implantation in malformed inner ear. Bratisl Lek Listy 110:609–613

    CAS  PubMed  Google Scholar 

  23. Black J, Hickson L, Black B, Perry C (2011) Prognostic indicators in paediatric cochlear implant surgery: a systematic literature review. Cochlear Implants Int 12:67–93

    Article  PubMed  Google Scholar 

  24. Sinnathuray AR, Meller R, Cosso M, Magnan J (2012) Cochlear implantation and contralateral auditory brainstem implantation. Otol Neurotol 33:963–967

    PubMed  Google Scholar 

  25. Joshi VM, Navlekar SK, Kishore GR, Reddy KJ, Kumar EC (2012) CT and MR imaging of the inner ear and brain in children with congenital sensorineural hearing loss. Radiographics 32:683–698

    Article  PubMed  Google Scholar 

  26. Elziere M, Roman S, Nicollas R, Triglia JM (2012) Value of systematic aetiological investigation in children with sensorineural hearing loss. Eur Ann Otorhinolaryngol Head Neck Dis 129:185–189

    Article  CAS  PubMed  Google Scholar 

  27. Green GE, Scott DA, McDonald JM, Woodworth GG, Sheffield VC, Smith RJ (1999) Carrier rates in the midwestern United States for GJB2 mutations causing inherited deafness. JAMA 281:2211–2216

    Article  CAS  PubMed  Google Scholar 

  28. Kelsell DP, Dunlop J, Stevens HP et al (1997) Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature 387:80–83

    Article  CAS  PubMed  Google Scholar 

  29. Kelley PM, Harris DJ, Comer BC et al (1998) Novel mutations in the connexin 26 gene (GJB2) that cause autosomal recessive (DFNB1) hearing loss. Am J Hum Genet 62:792–799

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Murgia A, Orzan E, Polli R et al (1999) Cx26 deafness: mutation analysis and clinical variability. J Med Genet 36:829–832

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Denoyelle F, Marlin S, Weil D et al (1999) Clinical features of the prevalent form of childhood deafness, DFNB1, due to a connexin-26 gene defect: implications for genetic counselling. Lancet 353:1298–1303

    Article  CAS  PubMed  Google Scholar 

  32. Del Castillo I, Villamar M, Moreno-Pelayo MA et al (2002) A deletion involving the connexin 30 gene in nonsyndromic hearing impairment. New Engl J Med 346:243–249

    Article  PubMed  Google Scholar 

  33. Lucotte G, Diéterlen F (2005) The 35delG mutation in the connexin 26 gene (GJB2) associated with congenital deafness: European carrier frequencies and evidence for its origin in ancient Greece. Genet Test 9:20–25

    Article  CAS  PubMed  Google Scholar 

  34. Tóth T, Kupka S, Haack B et al (2004) GJB2 mutations in patients with non-syndromic hearing loss from Northeastern Hungary. Hum Mutat 23:631–632

    Article  PubMed  Google Scholar 

  35. Seeman P, Malíková M, Rasková D et al (2004) Spectrum and frequencies of mutations in the GJB2 (Cx26) gene among 156 Czech patients with pre-lingual deafness. Clin Genet 66:152–157

    Article  CAS  PubMed  Google Scholar 

  36. Wiszniewski W, Sobieszczanska-Radoszewska L, Nowakowska-Szyrwinska E, Obersztyn E, Bal J (2001) High frequency of GJB2 gene mutations in Polish patients with prelingual nonsyndromic deafness. Genet Test 5:147–148

    Article  CAS  PubMed  Google Scholar 

  37. Janecke AR, Hirst-Stadlmann A, Günther B et al (2002) Progressive hearing loss, and recurrent sudden sensorineural hearing loss associated with GJB2 mutations–phenotypic spectrum and frequencies of GJB2 mutations in Austria. Hum Genet 111:145–153

    Article  CAS  PubMed  Google Scholar 

  38. Alvarez A, del Castillo I, Villamar M et al (2005) High prevalence of the W24X mutation in the gene encoding connexin-26 (GJB2) in Spanish Romani (gypsies) with autosomal recessive non-syndromic hearing loss. Am J Med Genet 137A:255–258

    Article  PubMed  Google Scholar 

  39. Bouwer S, Angelicheva D, Chandler D, Seeman P, Tournev I, Kalaydjieva L (2007) Carrier rates of the ancestral Indian W24X mutation in GJB2 in the general Gypsy population and individual subisolates. Genet Test 11:455–458

    Article  CAS  PubMed  Google Scholar 

  40. Fokkema IF, Taschner PE, Schaafsma GC, Celli J, Laros JF, den Dunnen JT (2011) LOVD v. 2.0: the next generation in gene variant databases. Hum Mutat 32:557–563

    Article  CAS  PubMed  Google Scholar 

  41. Del Castillo I, Moreno-Pelayo MA, Del Castillo FJ et al (2003) Prevalence and evolutionary origins of the del(GJB6-D13S1830) mutation in the DFNB1 locus in hearing-impaired subjects: a multicenter study. Am J Hum Genet 73:1452–1458

    Article  PubMed Central  PubMed  Google Scholar 

  42. Seeman P, Bendová O, Rasková D, Malíková M, Groh D, Kabelka Z (2005) Double heterozygosity with mutations involving both the GJB2 and GJB6 genes is a possible, but very rare, cause of congenital deafness in the Czech population. Ann Hum Genet 69:9–14

    Article  CAS  PubMed  Google Scholar 

  43. Minárik G, Tretinárová D, Szemes T, Kádasi L (2012) Prevalence of DFNB1 mutations in Slovak patients with non-syndromic hearing loss. Int J Pediatr Otorhinolaryngol 76:400–403

    Article  PubMed  Google Scholar 

  44. Tóth T, Kupka S, Haack B et al (2007) Coincidence of mutations in different connexin genes in Hungarian patients. Int J Mol Med 20:315–321

    PubMed  Google Scholar 

  45. Boulay AC, Del Castillo FJ, Giraudet F et al (2013) Hearing is normal without connexin30. J Neurosci 33:430–434

    Article  CAS  PubMed  Google Scholar 

  46. Angeli SI (2008) Phenotype/genotype correlations in a DFNB1 cohort with ethnical diversity. Laryngoscope 118:2014–2023

    Article  PubMed  Google Scholar 

  47. Orzan E, Murgia A (2007) Connexin 26 deafness is not always congenital. Int J Pediatr Otorhinolaryngol 71:501–507

    Article  PubMed  Google Scholar 

  48. Lefebvre PP, Van De Water TR (2000) Connexins, hearing and deafness: clinical aspects of mutations in the connexin 26 gene. Brain Res Brain Res Rev 32:159–162

    Article  CAS  PubMed  Google Scholar 

  49. Hilgert N, Huentelman MJ, Thorburn AQ et al (2009) Phenotypic variability of patients homozygous for the GJB2 mutation 35delG cannot be explained by the influence of one major modifier gene. Eur J Hum Genet 17:517–524

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Kenna MA, Rehm HL, Robson CD et al (2007) Additional clinical manifestations in children with sensorineural hearing loss and biallelic GJB2 mutations: who should be offered GJB2 testing? Am J Med Genet A 143A:1560–1566

    Article  CAS  PubMed  Google Scholar 

  51. Nance WE, Lim BG, Dodson KM (2006) Importance of congenital cytomegalovirus infections as a cause for pre-lingual hearing loss. J Clin Virol 35:221–225

    Article  PubMed  Google Scholar 

  52. Furutate S, Iwasaki S, Nishio SY, Moteki H, Usami S (2011) Clinical profile of hearing loss in children with congenital cytomegalovirus (CMV) infection: CMV DNA diagnosis using preserved umbilical cord. Acta Otolaryngol 131:976–982

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Slovak Research and Development Agency under the contract No. APVV-0148-10 and by the Grant VEGA No. 1/0465/11 under Ministry of Education, Science, Research and Sport of the Slovak Republic.

Conflict of interest

The authors declare no conflicts of interest concerning this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Profant.

Additional information

L. Varga and I. Mašindová have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varga, L., Mašindová, I., Hučková, M. et al. Prevalence of DFNB1 mutations among cochlear implant users in Slovakia and its clinical implications. Eur Arch Otorhinolaryngol 271, 1401–1407 (2014). https://doi.org/10.1007/s00405-013-2559-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-013-2559-0

Keywords

Navigation