Skip to main content
Log in

Would an endosteal CI-electrode make sense? Comparison of the auditory nerve excitability from different stimulation sites using ESRT measurements and mathematical models

  • Otology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Regarding potential endosteal cochlear implant electrodes, the primary goal of this paper is to compare different intra- and extra-cochlear stimulation sites in terms of current strengths needed for stimulating the auditory nerve. Our study was performed during routine cochlear implantation using needle electrodes for electric stimulation and by visually recording electrically elicited stapedius reflexes (ESRT) as a measure for the stimulus transfer. Of course this rather simple setup only allows rough estimations, which, however, may provide further arguments whether or not to proceed with the concept of an endosteal electrode. In addition, a mathematical model is being developed. In a pilot study, intra-operative electric stimuli were applied via a needle electrode commonly used for the promontory stimulation test. Thus, stapedius reflex thresholds (ESRTs), electrically elicited via the needle from different points inside and outside the cochlea served as indicators for the suitability of different electrode positions towards the modiolus. Tests were performed on 11 CI-recipients. In addition, the extension of electrical fields from different stimulation sites is simulated in a mathematical cochlea model. In most patients ESRT measurements could be performed and evaluated. Thus an “endosteal” stimulation seems possible, although the current intensities must be higher than at intraluminal stimulation sites. Moreover, our model calculations confirm that the extension of electric fields is less favourable with increasing distance from the electrode to the ganglion nerve cells. In terms of hearing, the concept of an endosteal electrode should only be promoted, if its superiority for hearing preservation can be proven, e.g. in animal experiments. However, for other indications like the electric suppression of tinnitus, further research seems advisable. Levels of evidence: N/A

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. von Ilberg C, Baumann U, Kiefer J, Tillein J, Adunka O (2011) Electric-acoustic stimulation of the auditory system: a review of the first decade. Audiol Neurootol 16(Suppl 2):1–30

    Article  Google Scholar 

  2. Jayawardena J, Kuthubutheen J, Rajan G (2012) Hearing preservation and hearing improvement after reimplantation of pediatric and adult patients with partial deafness: a retrospective case series review. Otol Neurotol 33:740–744

    Article  PubMed  Google Scholar 

  3. Erixon E, Köbler S, Rask-Andersen H (2012) Cochlear implantation and hearing preservation: Results in 21 consecutively operated patients using the round window approach. Acta Otolaryngol 132(9):923–931

    Article  PubMed  Google Scholar 

  4. Rajan GP, Kuthubutheen J, Hedne N, Krishnaswamy J (2012) The role of preoperative, intratympanic glucocorticoids for hearing preservation in cochlear implantation: a prospective clinical study. Laryngoscope 122:190–195

    Article  CAS  PubMed  Google Scholar 

  5. Bruce IA, Bates JE, Melling C, Mawman D, Green KM (2011) Hearing preservation via a cochleostomy approach and deep insertion of a standard length cochlear implant electrode. Otol Neurotol 32:1444–1447

    Article  PubMed  Google Scholar 

  6. Postelmans JT, van Spronsen E, Grolman W, Stokroos RJ, Tange RA, Maré MJ, Dreschler WA (2011) An evaluation of preservation of residual hearing using the suprameatal approach for cochlear implantation: can this implantation technique be used for preservation of residual hearing? Laryngoscope 21:1794–1799

    Article  Google Scholar 

  7. Obholzer RJ, Gibson WP (2011) Cochlear function following implantation with a full electrode array. Cochlear Implants Int 12:44–47

    Article  CAS  PubMed  Google Scholar 

  8. Helbig S, Baumann U, Hey C, Helbig M (2011) Hearing preservation after complete cochlear coverage in cochlear implantation with the free-fitting FLEXSOFT electrode carrier. Otol Neurotol 32:973–979

    Article  PubMed  Google Scholar 

  9. Skarzynski H, Lorens A, Zgoda M, Piotrowska A, Skarzynski PH, Szkielkowska A (2011) Atraumatic round window deep insertion of cochlear electrodes. Acta Otolaryngol 131:740–749

    Article  PubMed  Google Scholar 

  10. Usami S, Moteki H, Suzuki N, Fukuoka H, Miyagawa M, Nishio SY, Takumi Y, Iwasaki S, Jolly C (2011) Achievement of hearing preservation in the presence of an electrode covering the residual hearing region. Acta Otolaryngol 131:405–412

    Article  PubMed Central  PubMed  Google Scholar 

  11. Brown RF, Hullar TE, Cadieux JH, Chole RA (2010) Residual hearing preservation after paediatric cochlear implantation. Otol Neurotol 31:1221–1226

    Article  PubMed Central  PubMed  Google Scholar 

  12. Lehnhardt E (1993) Intracochlear placement of cochlear implant electrodes in soft surgery technique. HNO 41:356–359

    CAS  PubMed  Google Scholar 

  13. Pau HW, Just T, Lehnhardt E, Hessel H, Behrend D (2005) An “endosteal electrode” for cochlear implantation in cases with residual hearing? Feasibility study: preliminary temporal bone experiments. Otol Neurotol 26:448–454

    Article  PubMed  Google Scholar 

  14. Lehnhardt E, Wagner H, Kabelka Z (2004) Are we confident about operating on—or even inside—an inner ear that is still functional without having to fear that the patient will lose his residual hearing? Otolaryngol Pol 58:45–49

    CAS  PubMed  Google Scholar 

  15. Kuo SC, Gibson WP (2002) The role of the promontory stimulation test in cochlear implantation. Cochlear Implants Int 3:19–28

    Article  PubMed  Google Scholar 

  16. Lee JC, Yoo MH, Ahn JH, Lee KS (2007) Value of the promontory stimulation test in predicting speech perception after cochlear implantation. Laryngoscope 117:1988–1992

    Article  PubMed  Google Scholar 

  17. Hoth S, Lenarz T (1991) Experience with electrostimulation of the acoustic nerve before cochlea implantation. Laryngorhinootologie 70:199–207

    Article  CAS  PubMed  Google Scholar 

  18. Plonsey R, Heppner D (1967) Considerations of quasi-stationarity in electrophysiological systems. Bull Math Biophys 29:657–664

    Article  CAS  PubMed  Google Scholar 

  19. Spelman FA, Clopton BM, Pfingst BE (1982) Tissue impedance and current flow in the implanted ear. Implications for the cochlear prosthesis. Ann Otol Rhinol Laryngol Suppl 98:3–8

    CAS  PubMed  Google Scholar 

  20. Grünbaum A, van Rienen U, Pau HW (2010) A 3D-CAD model of the human cochlea for electromagnetic studies. In: Proceedings of the 44th annual conference of the German Society for Biomedical Technology

  21. Parkinson AJ, Arcaroli J, Staller SJ, Arndt PL, Cosgriff A, Ebinger K (2002) The nucleus 24 contour cochlear implant system: adult clinical trial results. Ear Hear 23(1 Suppl):41S–48S

    Article  PubMed  Google Scholar 

  22. Balkany TJ, Eshraghi AA, Yang N (2002) Modiolar proximity of three perimodiolar cochlear implant electrodes. Acta Otolaryngol 122:363–369

    Article  PubMed  Google Scholar 

  23. Gstoettner WK, Adunka O, Franz P, Hamzavi J Jr, Plenk H Jr, Susani M, Baumgartner W, Kiefer J (2001) Perimodiolar electrodes in cochlear implant surgery. Acta Otolaryngol 121:216–219

    Article  CAS  PubMed  Google Scholar 

  24. Manrique R, Picciafuoco SE, Cervera-Paz FJ, Pérez N, Manrique MJ (2012) Promontorial cochleostomy in nonhuman primates. Is it atraumatic? Eur Arch Otorhinolaryngol 270(1):45–52

    Article  PubMed  Google Scholar 

  25. Brahe Pedersen C, Møller K, Jochumsen U, Madsen S, Spliid PE (1988) Cochlear implant. Treatment of deaf people with cochlear implant–results of an 8-channel extracochlear implant. Acta Otolaryngol Suppl 449:55–57

    Article  CAS  PubMed  Google Scholar 

  26. Facer GW, Rose DE, McDonald TJ, King AM, Fabry DA (1986) Individual data from the 3M/Vienna extracochlear implant. Laryngoscope 96:1053–1057

    Article  CAS  PubMed  Google Scholar 

  27. Banfai P, Karczag A, Kubik S, Lüers P, Sürth W (1986) Extracochlear sixteen-channel electrode system. Otolaryngol Clin North Am 19:371–408

    CAS  PubMed  Google Scholar 

  28. Burian K, Hochmair-Desoyer IJ, Eisenwort B (1986) The Vienna cochlear implant program. Otolaryngol Clin North Am 19:313–328

    CAS  PubMed  Google Scholar 

  29. Gersdorff M, Cazals Y, Sneppe R, Barbaix MT, Montmirail C (1985) Personal experience with a unicanal extracochlear implant in reference to rehabilitation in total bilateral deafness. Multicenter study preliminary report. Acta Otorhinolaryngol Belg 39:705–719

    CAS  PubMed  Google Scholar 

  30. Portmann M, Cazals Y, Negrevergne M (1986) Otolaryngol Clin North Am 19:307–312

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by the German Research Foundation (DFG), Research Training Group 1505/1 WELISA.

Conflict of interest

There are no financial interests or conflicts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Wilhelm Pau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pau, H.W., Grünbaum, A., Ehrt, K. et al. Would an endosteal CI-electrode make sense? Comparison of the auditory nerve excitability from different stimulation sites using ESRT measurements and mathematical models. Eur Arch Otorhinolaryngol 271, 1375–1381 (2014). https://doi.org/10.1007/s00405-013-2543-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-013-2543-8

Keywords

Navigation