Advertisement

European Archives of Oto-Rhino-Laryngology

, Volume 271, Issue 1, pp 59–64 | Cite as

Use of granules of biphasic ceramic in rehabilitation of canal wall down mastoidectomy

  • Daniele BernardeschiEmail author
  • Yann Nguyen
  • Isabelle Mosnier
  • Mustapha Smail
  • Evelyne Ferrary
  • Olivier Sterkers
Otology

Abstract

The objective of this study is to evaluate the anatomical and functional results of rehabilitation of canal wall down (CWD) mastoidectomy using granules of biphasic ceramic. This is a study design retrospective in a tertiary referral centre Fifty-seven patients (59 ears) operated on between 2006 and 2010 of mastoid obliteration with granules of biphasic ceramic (TricOs®, Maurepas, France) have been included (55 revisions and 4 first surgeries). Forty-six patients presented already a CWD mastoidectomy. The mean pre-operative bone conduction (BC) was 29 ± 3.4 dB (mean ± SEM) and mean air conduction (AC) was 57 ± 3.2 dB. Cholesteatoma was found in 33 cases. All but seven cases had post-operative otoscopy examination at 1, 3, 6 months, and 1 year postoperative with a CT scan and pure tone audiometry. Mean follow-up was 14 ± 1.8 months (3–35). At one-year follow-up (n = 52), 47 cases (90 %) presented well-healed external auditory canal. Five cases (10 %) of uncovered granules without sign of infection of external auditory canal skin were observed. Mean post-operative threshold was 25 ± 1.8 and 46 ± 1.9 dB for BC and AC , respectively (n = 47). CT scan (n = 42) showed no opacity suggesting residual disease within or behind obliteration. Mastoid obliteration with granules of biphasic ceramic is a safe and effective procedure that allows restoration of a near normal external auditory canal.

Keywords

Canal wall down Mastoidectomy Cholesteatoma Obliteration Granules Biphasic ceramic 

References

  1. 1.
    Nadol JB, Schuknecht HF (1993) Surgery of the ear and temporal bone.Raven, New York, p53Google Scholar
  2. 2.
    Brown JS (1982) A ten year statistical follow-up of 1142 consecutive cases of cholesteatoma: the closed vs. the open technique. Laryngoscope 92(4):390–396PubMedCrossRefGoogle Scholar
  3. 3.
    Nyrop M, Bonding P (1997) Extensive cholesteatoma: long-term results of three surgical techniques. J Laryngol Otol 111(6):521–526PubMedCrossRefGoogle Scholar
  4. 4.
    Roberson JB Jr, Mason TP, Stidham KR (2003) Mastoid obliteration: autogenous cranial bone pAte reconstruction. Otol Neurotol 24(2):132–140PubMedCrossRefGoogle Scholar
  5. 5.
    Palva T (1973) Operative technique in mastoid obliteration. Acta Otolaryngol 75(4):289–290PubMedCrossRefGoogle Scholar
  6. 6.
    Shea MC Jr, Gardner G Jr, Simpson ME (1972) Mastoid obliteration with bone. Otolaryngol Clin North Am 5(1):161–172PubMedGoogle Scholar
  7. 7.
    Montandon P, Benchaou M, Guyot JP (1995) Modified canal wall-up mastoidectomy with mastoid obliteration for severe chronic otitis media. ORL J Otorhinolaryngol Relat Spec 57(4):198–201PubMedCrossRefGoogle Scholar
  8. 8.
    Mills RP (1988) Surgical management of the discharging mastoid cavity. J Laryngol Otol Suppl 16:1–6PubMedGoogle Scholar
  9. 9.
    Moffat DA, Da Cruz MJ, Batten A, Hardy DG (1998) Use of autologous osteocyte containing bone pate for closure of tegmental defects. Am J Otol 19(6):819–823PubMedGoogle Scholar
  10. 10.
    Irving RM, Gray RF, Moffat DA (1994) Bone pâté obliteration or revision mastoidectomy: a five-symptom comparative study. Clin Otolaryngol Allied Sci 19(2):158–160PubMedCrossRefGoogle Scholar
  11. 11.
    Vercruysse J-P, De Foer B, Somers T, Casselman JW, Offeciers E (2008) Mastoid and epitympanic bony obliteration in pediatric cholesteatoma. Otol Neurotol 29(7):953–960PubMedCrossRefGoogle Scholar
  12. 12.
    Dornhoffer JL (1999) Surgical modification of the difficult mastoid cavity. Otolaryngol Head Neck Surg 120(3):361–367PubMedCrossRefGoogle Scholar
  13. 13.
    Hartwein J, Hörmann K (1990) A technique for the reconstruction of the posterior canal wall and mastoid obliteration in radical cavity surgery. Am J Otol 11(3):169–173PubMedGoogle Scholar
  14. 14.
    Estrem SA, Highfill G (1999) Hydroxyapatite canal wall reconstruction/mastoid obliteration. Otolaryngol Head Neck Surg 120(3):345–349PubMedCrossRefGoogle Scholar
  15. 15.
    Grote JJ (1998) Results of cavity reconstruction with hydroxyapatite implants after 15 years. Am J Otol 19(5):565–568PubMedGoogle Scholar
  16. 16.
    Daculsi G, Passuti N, Martin S, Deudon C, Legeros RZ, Raher S (1990) Macroporous calcium phosphate ceramic for long bone surgery in humans and dogs. Clinical and histological study. J Biomed Mater Res 24(3):379–396PubMedCrossRefGoogle Scholar
  17. 17.
    LeGeros RZ (1988) Calcium phosphate materials in restorative dentistry: a review. Adv Dent Res 2(1):164–180PubMedGoogle Scholar
  18. 18.
    Wullstein HL, Wullstein SR (1981) Plastic and reconstructive surgery of the head and neck. The international symposium, Rehabilitative surgery. Varlag Grune and Stratton, New York, p 354Google Scholar
  19. 19.
    Bagot d’Arc M, Daculsi G, Emam N (2004) Biphasic ceramics and fibrin sealant for bone reconstruction in ear surgery. Ann Otol Rhinol Laryngol 113(9):711–720PubMedGoogle Scholar
  20. 20.
    Le Guéhennec L, Layrolle P, Daculsi G (2004) A review of bioceramics and fibrin sealant. Eur Cell Mater 8:1–10 discussion 10–11PubMedGoogle Scholar
  21. 21.
    Daculsi G, Bagot d’Arc M, Corlieu P, Gersdorff M (1992) Macroporous biphasic calcium phosphate efficiency in mastoid cavity obliteration: experimental and clinical findings. Ann Otol Rhinol Laryngol 101(8):669–674PubMedGoogle Scholar
  22. 22.
    Daculsi G, LeGeros RZ, Heughebaert M, Barbieux I (1990) Formation of carbonate-apatite crystals after implantation of calcium phosphate ceramics. Calcif Tissue Int 46(1):20–27PubMedCrossRefGoogle Scholar
  23. 23.
    Daculsi G (1998) Biphasic calcium phosphate concept applied to artificial bone, implant coating and injectable bone substitute. Biomaterials 19(16):1473–1478PubMedCrossRefGoogle Scholar
  24. 24.
    Schmoekel HG, Weber FE, Schense JC, Grätz KW, Schawalder P, Hubbell JA (2005) Bone repair with a form of BMP-2 engineered for incorporation into fibrin cell ingrowth matrices. Biotechnol Bioeng 89(3):253–262PubMedCrossRefGoogle Scholar
  25. 25.
    Kania RE, Meunier A, Hamadouche M, Sedel L, Petite H (1998) Addition of fibrin sealant to ceramic promotes bone repair: long-term study in rabbit femoral defect model. J Biomed Mater Res 43(1):38–45PubMedCrossRefGoogle Scholar
  26. 26.
    Bagot D’Arc M, Daculsi G (2003) Micro macroporous biphasic ceramics and fibrin sealant as a moldable material for bone reconstruction in chronic otitis media surgery. A 15 years experience. J Mater Sci Mater Med 14(3):229–233PubMedCrossRefGoogle Scholar
  27. 27.
    Jegoux F, Goyenvalle E, Bagot D’arc M, Aguado E, Daculsi G (2005) In vivo biological performance of composites combining micro-macroporous biphasic calcium phosphate granules and fibrin sealant. Arch Orthop Trauma Surg 125(3):153–159PubMedCrossRefGoogle Scholar
  28. 28.
    Deveze A, Rameh C, Puchol MS, Lafont B, Lavieille J-P, Magnan J (2010) Rehabilitation of canal wall down mastoidectomy using a titanium ear canal implant. Otol Neurotol 31(2):220–224PubMedCrossRefGoogle Scholar
  29. 29.
    Cho SW, Cho Y-B, Cho H-H (2012) Mastoid obliteration with silicone blocks after canal wall down mastoidectomy. Clin Exp Otorhinolaryngol 5(1):23–27PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Stoor P, Pulkkinen J, Grénman R (2010) Bioactive glass S53P4 in the filling of cavities in the mastoid cell area in surgery for chronic otitis media. Ann Otol Rhinol Laryngol 119(6):377–382PubMedGoogle Scholar
  31. 31.
    Silvola JT (2012) Mastoidectomy cavity obliteration with bioactive glass: a pilot study. Otolaryngol Head Neck Surg 147(1):119–126PubMedCrossRefGoogle Scholar
  32. 32.
    Sarin J, Grénman R, Aitasalo K, Pulkkinen J (2012) Bioactive glass S53P4 in mastoid obliteration surgery for chronic otitis media and cerebrospinal fluid leakage. Ann Otol Rhinol Laryngol 121(9):563–569PubMedGoogle Scholar
  33. 33.
    Daculsi G, LeGeros RZ, Nery E, Lynch K, Kerebel B (1989) Transformation of biphasic calcium phosphate ceramics in vivo: ultrastructural and physicochemical characterization. J Biomed Mater Res 23(8):883–894PubMedCrossRefGoogle Scholar
  34. 34.
    Goyenvalle E, Aguado E, Pilet P, Daculsi G (2010) Biofunctionality of MBCP ceramic granules (TricOs) plus fibrin sealant (Tisseel) versus MBCP ceramic granules as a filler of large periprosthetic bone defects: an investigative ovine study. J Mater Sci Mater Med 21(6):1949–1958PubMedCrossRefGoogle Scholar
  35. 35.
    Daculsi G, Bagot d’Arc M, Corlieu P, Gersdorff M (1992) Macroporous biphasic calcium phosphate efficiency in mastoid cavity obliteration: experimental and clinical findings. Ann Otol Rhinol Laryngol 101(8):669–674PubMedGoogle Scholar
  36. 36.
    Bagol d’Arc M (1987) Use of bioactivc ceramics in oto-surgery. Transplants and implants in otology: proceedings of the International Symposium. Kugler and Ghedini,Amsterdam, p 253Google Scholar
  37. 37.
    Hinohira Y, Gyo K, Yanagihara N, Bredberg G, Alsterborg E (1998) Effects of mastoid cavity obliteration on the growth of experimentally produced residual cholesteatoma. Acta Otolaryngol 118(1):101–104PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Daniele Bernardeschi
    • 1
    • 2
    • 3
    Email author
  • Yann Nguyen
    • 2
    • 3
  • Isabelle Mosnier
    • 1
    • 2
    • 3
  • Mustapha Smail
    • 1
    • 2
    • 3
  • Evelyne Ferrary
    • 1
    • 2
    • 3
  • Olivier Sterkers
    • 1
    • 2
    • 3
  1. 1.ENT DepartmentAP-HP, Beaujon HospitalClichyFrance
  2. 2.InsermUMRS867ParisFrance
  3. 3.Sorbonne Paris CitéUniv Paris DiderotParisFrance

Personalised recommendations