Skip to main content
Log in

The relationship between pneumatized middle turbinate and the anterior ethmoid roof dimensions: a radiologic study

  • Rhinology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

The development of pneumatized middle turbinate may affect anterior ethmoid roof formation. The aim of this study was to investigate the relationship between the pneumatized middle turbinate and the dimensions of the anterior skull base structures using computed tomography scans. The coronal reconstructed images of the computed tomography scans were evaluated retrospectively. The lateral and medial ethmoid roof points, the width of the cribriform plate (CP), and the anterior ethmoid roof were identified at the first coronal cut, which was determined by the infraorbital nerve. The pneumatized middle turbinates were measured on the axial, vertical, and sagittal planes. The images of 101 patients were evaluated. The mean axial diameters of the pneumatized middle turbinate on the right and left sides were between 6.93 and 4.95 mm, respectively. The correlation between the axial diameters of the pneumatized middle turbinate and the width of the anterior ethmoid roof (termed AER width) was significant for both sides and gender (p < 0.05). There was a higher correlation on the right side where the pneumatized middle turbinate was observed more frequently (r = 0.357). The relationship between CP width and the diameters of the pneumatized middle turbinate was not significant (p > 0.05) for both sides. Iatrogenic lesions of the skull base occur predominantly in the lateral lamella of the CP. The risk of this complication may decrease with increasing of the AER width. Pneumatized middle turbinate may cause an increase in the width of the anterior ethmoid roof and provide more reliable endoscopic intervention of the anterior skull base and frontal sinus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cappabianca P, Alfieri A, de Divitiis E (1998) Endoscopic endonasal transsphenoidal approach to the sella: towards functional endoscopic pituitary surgery (FEPS). Minim Invasive Neurosurg 41:66–73

    Article  PubMed  CAS  Google Scholar 

  2. Yanagisawa E (1993) Endoscopic view of the middle turbinate. Ear Nose Throat J 72:725–727

    PubMed  CAS  Google Scholar 

  3. Navarro JAC (2000) Surgical anatomy of the nose, paranasal sinuses, and pterygopalatine fossa. In: Draf W, Stamm AC (eds) Microendoscopic surgery of the paranasal sinuses and the skull base. Springer, Berlin, pp 17–34

    Chapter  Google Scholar 

  4. Bolger WE (2001) Anatomy of the paranasal sinuses. In: Kennedy DW, Bolger WE, Zinreich SJ (eds) Disease of the sinuses. B.C. Decker Inc, London, pp 1–12

  5. Bingham B, Wang RG, Hawke M et al (1991) The embryonic development of the lateral nasal wall from 8 to 24 weeks. Laryngoscope 10:992–997

    Google Scholar 

  6. Bolger WE, Butzin CA, Parsons DS (1991) Paranasal sinus bony anatomic variations and mucosal abnormalities: CT analysis for endoscopic sinus surgery. Laryngoscope 101:56–64

    Article  PubMed  CAS  Google Scholar 

  7. Keros P (1962) On the practical value of differences in the level of the lamina cribrosa of the ethmoid [in German]. Z Laryngol Rhinol Otol Ihre Grenzgeb 41:808–813

    Google Scholar 

  8. Perez-Pinas I, Sabate J (2000) Anatomical variations in the human paranasal sinus region studied by CT. J Anat 197:221–227

    Article  PubMed  Google Scholar 

  9. Ozcan KM, Selcuk A, Ozcan I, Akdogan O et al (2008) Anatomical variations of nasal turbinates. J Craniofac Surg 19:1678–1682

    Article  PubMed  Google Scholar 

  10. Hatipoglu HG, Cetin MA, Yuksel E (2005) Concha bullosa types: their relationship with sinusitis, ostiomeatal and frontal recess disease. Diagn Intervent Radiol 11:145–149

    Google Scholar 

  11. Yigit O, Acıoglu E, Cakır ZA et al (2010) Concha bullosa and septal deviation. Eur Arch Otorhinolaryngol 267:1397–1401

    Article  PubMed  Google Scholar 

  12. Solares CA, Lee WT, Batra PS et al (2008) Lateral lamella of the cribriform plate: software-enabled computed tomographic analysis and its clinical relevance in skull base surgery. Arch Otolaryngol Head Neck Surg 134:285–289

    Article  PubMed  Google Scholar 

  13. Contencin P, Gumpert L, Sleiman J et al (1999) Nasal fossae dimensions in the neonate and young infant: a computed tomographic scan study. Arch Otolaryngol Head Neck Surg 125:777–781

    PubMed  CAS  Google Scholar 

  14. Neskey D, Eloy JA, Casiano RR (2009) Nasal, septal, and turbinate anatomy and embryology. Otolaryngol Clin North Am 42:193–205

    Article  PubMed  Google Scholar 

  15. Wolf G, Anderhuber W, Kuhn F (1993) Development of the paranasal sinuses in children: implications for paranasal sinus surgery. Ann Otol Rhinol Laryngol 102:705–711

    PubMed  CAS  Google Scholar 

  16. Weiglein A, Anderhuber W, Wolf G (1992) Radiologic anatomy of the paranasal sinuses in the child. Surg Radiol Anat 14:335–339

    Article  PubMed  CAS  Google Scholar 

  17. Uygur K, Tuz M, Doğru H (2003) The correlation between septal deviation and concha bullosa. Otolaryngol Head Neck Surg 129:33–36

    Article  PubMed  Google Scholar 

  18. Unlu HH, Akyar S, Caylan R et al (1994) Concha bullosa. J Otolaryngol 23:23–27

    PubMed  CAS  Google Scholar 

  19. Lidov M, Som PM (1990) Inflammatory disease involving a concha bullosa (enlarged pneumatized middle nasal turbinate): MR and CT appearance. AJNR 11:999–1001

    PubMed  CAS  Google Scholar 

  20. Zinreich SJ, Mattox DE, Kennedy DW et al (1988) Concha bullosa: CT evaluation. J Comput Assist Tomogr 12:778–784

    Article  PubMed  CAS  Google Scholar 

  21. Principato JJ (1991) Upper airway obstruction and craniofacial morphology. Otolaryngol Head Neck Surg 104:881–890

    PubMed  CAS  Google Scholar 

  22. Stammberger H (1991) Functional endoscopic sinus surgery, the messerklinger technique. B.C. Decker, Philadelphia, pp 156–168

    Google Scholar 

  23. Stallman Jamie S, Lobo Joao N et al (2004) The incidence of concha bullosa and its relationship to nasal septal deviation and paranasal sinus disease. Am J Neuroradiol 25:1613–1618

    PubMed  Google Scholar 

  24. Elwany S, Medanni A, Eid M et al (2010) Radiological observations on the olfactory fossa and ethmoid roof. J Laryngol Otol 124:1251–1256

    Article  PubMed  CAS  Google Scholar 

  25. Stallman K, Shin HS (1986) Clinical significance of unilateral sinusitis. J Korean Med Sci 1:69–74

    Google Scholar 

  26. Calhoun KH, Waggenspack GA, Simpson CB et al (1991) CT evaluation of the paranasal sinuses in symptomatic and asymptomatic populations. Otolaryngol Head Neck Surg 104:480–483

    PubMed  CAS  Google Scholar 

  27. Danese M, Duvoisin B, Agrifoglio A et al (1997) Influence of nasosinusal anatomic variants on recurrent, persistent or chronic sinusitis. X-ray computed tomographic evaluation in 112 patients. J Radiol 78:651–657

    PubMed  CAS  Google Scholar 

  28. Lam WW, Liang EY, Woo JK et al (1996) The etiological role of concha bullosa in chronic sinusitis. Eur Radiol 6:550–552

    Article  PubMed  CAS  Google Scholar 

  29. Lee JC, Song YJ, Chung YS et al (2007) Height and shape of the skull base as risk factors for skull base penetration during endoscopic sinus surgery. Ann Otol Rhinol Laryngol 116:199–205

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors declare that they have no financial relationship with the organization that sponsored the research.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramazan Gun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gun, R., Yorgancilar, E., Bakir, S. et al. The relationship between pneumatized middle turbinate and the anterior ethmoid roof dimensions: a radiologic study. Eur Arch Otorhinolaryngol 270, 1365–1371 (2013). https://doi.org/10.1007/s00405-012-2232-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-012-2232-z

Keywords

Navigation