Skip to main content
Log in

Effects of hyperbaric oxygen treatment on auditory hair cells after acute noise damage

  • Otology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Acute acoustic trauma (AAT) is a sudden sensorineural hearing loss caused by exposure of the hearing organ to acoustic overstimulation, typically an intense sound impulse, hyperbaric oxygen therapy (HOT), which favors repair of the microcirculation, can be potentially used to treat it. Hence, this study aimed to assess the effects of HOT on guinea pigs exposed to acoustic trauma. Fifteen guinea pigs were exposed to noise in the 4-kHz range with intensity of 110 dB sound level pressure for 72 h. They were assessed by brainstem auditory evoked potential (BAEP) and by distortion product otoacoustic emission (DPOAE) before and after exposure and after HOT at 2.0 absolute atmospheres for 1 h. The cochleae were then analyzed using scanning electron microscopy (SEM). There was a statistically significant difference in the signal-to-noise ratio of the DPOAE amplitudes for the 1- to 4-kHz frequencies and the SEM findings revealed damaged outer hair cells (OHC) after exposure to noise, with recovery after HOT (p = 0.0159), which did not occur on thresholds and amplitudes to BAEP (p = 0.1593). The electrophysiological BAEP data did not demonstrate effectiveness of HOT against AAT damage. However, there was improvement of the anatomical pattern of damage detected by SEM, with a significant reduction of the number of injured cochlear OHC and their functionality detected by DPOAE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AAT:

Acute acoustic trauma

ATA:

Absolute atmospheric pressure

OHC:

Outer hair cells

HOT:

Hyperbaric oxygen therapy

FMRP:

Faculty of Medicine of Ribeirão Preto

USP:

University of São Paulo

OAE:

Otoacoustic emission

DPOAE:

Distortion product otoacoustic emission

BEAP:

Brainstem auditory evoked potential

dB SPL:

Decibel sound pressure level

SEM:

Scanning electron microscopy

T1:

Basal turn

T2:

Second turn

T3:

Third turn

SOD:

Superoxide dismutase

SOD1:

Copper/zinc-superoxide dismutase

R1:

First row

R2:

Second row

R3:

Third row

References

  1. Allen GC, Tiu C, Koike K, Ritchey AK, Kurs-Lasky M, Wax MK (1998) Transient-evoked otoacoustic emissions in children after cisplatin chemotherapy. Otolaryngol Head Neck Surg 118:584–588

    CAS  PubMed  Google Scholar 

  2. Bakker DJ (1992) Hyperbaric oxygen therapy: past, present and future indications. Adv Exp Med Biol 317:95–105

    CAS  PubMed  Google Scholar 

  3. Çakir BO, Ergan I, Civelek S, Körpinar S, Toklu AS, Gedik O, Isik G, Sayin I, Turgut S (2006) Negative effect of immediate hyperbaric oxygen therapy in acute acoustic trauma. Otol Neurotol 27:478–483

    Article  PubMed  Google Scholar 

  4. Cardinaal RM, Groot JCMJ, Huizing EH, Veldman JE, Smoorenburg GF (2000) Cisplatin-induced ototoxicity: morphological evidence of spontaneous outer hair cell recovery in albino guinea pigs? Hear Res 144:147–156

    Article  CAS  PubMed  Google Scholar 

  5. Cardinaal RM, Groot JCMJ, Huizing EH, Veldman JE, Smoorenburg GF (2000) Dose-dependent effect of 8-day cisplatin administration upon the morphology of the albino guinea pig cochlea. Hear Res 144:135–146

    Article  CAS  PubMed  Google Scholar 

  6. Cevette MJ, Drew D, Webb TM, Marion MS (2000) Cisplatin ototoxicity, increased DPOAE amplitudes, and magnesium deficiency. Distortion product otoacoustic emissions. J Am Acad Audiol 11:323–329

    CAS  PubMed  Google Scholar 

  7. Chan E, Suneson A, Ulfendahl M (1998) Acoustic trauma causes reversible stiffness changes in auditory sensory cells. Neuroscience 83:961–968

    Article  CAS  PubMed  Google Scholar 

  8. d’Aldin C, Cherny L, Devriére F, Dancer A (1999) Treatment of acoustic trauma. Ann NY Acad Sci 884:328–344

    Article  PubMed  Google Scholar 

  9. Endo T, Nakagawa T, Iguchi F, Kita T, Okano T, Sha SH, Schacht J, Shiga A, Kim TS, Ito J (2005) Elevation of superoxide dismutase increases acoustic trauma from noise exposure. Free Radic Biol Med 38:492–498

    Article  CAS  PubMed  Google Scholar 

  10. Harel N, Kakigi A, Hirakawa H, Mount RJ, Harrison RV (1997) The effects of anesthesia on otoacoustic emissions. Hear Res 110:25–33

    Article  CAS  PubMed  Google Scholar 

  11. Hyde GE, Rubel EW (1995) Mitochondrial role in hair cell survival after injury. Otolaryngol Head Neck Surg 113:530–540

    CAS  PubMed  Google Scholar 

  12. Jero J, Coling DE, Lalwani AK (2001) The use of Preyer’s reflex in evaluation of hearing in mice. Acta Otolaryngol 121:585–589

    Article  CAS  PubMed  Google Scholar 

  13. Kuokkanen J, Aarnisalo AA, Ylikoski J (2000) Efficiency of hyperbaric oxygen therapy in experimental acute acoustic trauma from firearms. Acta Otolaryngol Suppl 120:132–134

    Article  Google Scholar 

  14. Lamm K, Arnold W (1999) Successful treatment of noise-induced cochlear ischemia, hypoxia and hearing loss. Ann NY Acad Sci 884:233–248

    Article  CAS  PubMed  Google Scholar 

  15. Lim DJ, Melnick W (1971) Acoustic damage to the cochlea: a scanning and transmission electron microscopic observation. Arch Otolaryngol 94:294–305

    CAS  PubMed  Google Scholar 

  16. Ozturan O, Jerger J, Lew H, Lynch GR (1996) Monitoring of cisplatin ototoxicity by distortion product otoacustic emissions. Auris-Nasus-Larinx 23:147–151

    CAS  Google Scholar 

  17. Ress BD, Sridhar KS, Balkany TJ, Waxman GM, Stagner BB, Lonsbury-Martin BL (1999) Effects of cis-platinum chemotherapy on otoacoustic emissions: the development of an objective screening protocol. Third place Resident Clinical Science Award 1998. Otolaryngol Head Neck Surg 121:693–701

    Article  CAS  PubMed  Google Scholar 

  18. Saito T, Manabe Y, Honda N, Yamada T, Yamamoto T, Saito H (1995) Semiquantitative analysis by scanning electron microscopy of cochlear hair cell damage by ototoxic drugs. Scanning Microsc 9:271–280 (discussion 280–281)

    CAS  PubMed  Google Scholar 

  19. Saunders JC, Dear SP, Scheneider ME (1985) The anatomical consequences of acoustic injury: a review and tutorial. J Acoustic Soc Am 78:833–860

    Article  CAS  Google Scholar 

  20. Shaw NA (1988) The auditory evoked potential in the rat—a review. Prog Neurobiol 31:19–45

    Article  CAS  PubMed  Google Scholar 

  21. Sie KC, Norton SJ (1997) Changes in otoacoustic emissions and auditory brain stem response after cisplatinum exposure in gerbils. Otolaryngol Head Neck Surg 116:585–592

    Article  CAS  PubMed  Google Scholar 

  22. Sockalingam R, Freeman S, Cherny TL, Sohmer H (2000) Effect of high-dose cisplatin on auditory brainstem responses and otoacoustic emissions in laboratory animals. Am J Otol 21:521–527

    CAS  PubMed  Google Scholar 

  23. Stadnicki SW, Fleischman RW, Schaeppi U, Merriam P (1975) Cis-dichlorodiammineplatinum (II) (NSC-119875): hearing loss and other toxic effects in rhesus monkeys. Can Chemother Rep 59(3):467–480

    Google Scholar 

  24. Stengs CHM, Klis SFL, Huizing EH, Smoorenburg GF (1997) Cisplatin-induced ototoxicity; electrophysiological evidence of spontaneous recovery in the albino guinea pig. Hear Res 111:103–113

    Article  CAS  PubMed  Google Scholar 

  25. Stengs CHM, Klis SFL, Huizing EH, Smoorenburg GF (1998) Protective effects of a neurotrophic ACTH (4–9) analog on cisplatin ototoxicity in relation to the cisplatin dose: an electrocochleographic study in albino guinea pigs. Hear Res 124:108–117

    Article  CAS  PubMed  Google Scholar 

  26. Ylikoski J, Mrena R, Mäkitie A, Kuokkanen J, Pirvola U, Savolainen S (2008) Hyperbaric oxygen therapy seems to enhance recovery from acute acoustic trauma. Acta Otolaryngol 128:1110–1115

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research related to this article has been sponsored by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) under the process of number 2007/59213-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Angelo Hyppolito.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colombari, G.C., Rossato, M., Feres, O. et al. Effects of hyperbaric oxygen treatment on auditory hair cells after acute noise damage. Eur Arch Otorhinolaryngol 268, 49–56 (2011). https://doi.org/10.1007/s00405-010-1338-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-010-1338-4

Keywords

Navigation