Skip to main content
Log in

Age dependence of otoacoustic emissions: the loss of amplitude is primarily caused by age-related hearing loss and not by aging alone

  • Otology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

The amplitude of otoacoustic emissions (OAE) is known to decrease with increasing age, but it is still unclear whether this is due to aging alone or to age-related hearing loss. This study describes the exploration of a large database (5,142 patients from 0.4 to 89.8 years) collected in a routine clinical testing. Reliable pure tone audiograms, transitory evoked otoacoustic emissions (TEOAE) and distortion product otoacoustic emissions (DPOAE) recordings were available from 5,424 ears without conductive loss, acute sudden deafness or retrocochlear disorder. From this database, group 1 with behavioral thresholds of 10 dB HL or better at all frequencies from 1 to 4 kHz and group 2 with age-accordant thresholds after ISO 7029 were formed. In both groups, the OAE amplitude decreased with increasing age, but in group 1, the effect was significant only for DPOAE recorded at 3 and 4 kHz. In group 2, the loss of amplitude was steeper and highly significant for TEOAE as well as DPOAE at all frequencies, but most pronounced at high frequencies. These findings support the hypothesis that the reduction of OAE amplitude with increasing age is primarily caused by age-linked hearing loss and not by aging alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Attias J, Furst M, Furman V, Reshef I, Horowitz G, Bresloff I (1995) Noise-induced otoacoustic emission loss with or without hearing loss. Ear Hear 16(6):612–618

    Article  CAS  PubMed  Google Scholar 

  2. Avan P, Bonfils P, Loth D, Elbez M, Erminy M (1995) Transient-evoked otoacoustic emissions and high-frequency acoustic trauma in the guinea pig. J Acoust Soc Am 97(5):3012–3020

    Article  CAS  PubMed  Google Scholar 

  3. Avan P, Elbez M, Bonfils P (1997) Click-evoked otoacoustic emissions and the influence of high-frequency hearing losses in humans. J Acoust Soc Am 101(5):2771–2777

    Article  CAS  PubMed  Google Scholar 

  4. Balatsouras DG, Tsimpiris N, Korres S, Karapantzos I, Papadimitrou N, Danielidis V (2005) The effect of impulse noise on distortion otoacoustic emissions. Int J Audiol 44:540–549

    Article  PubMed  Google Scholar 

  5. Bertoli S, Probst R (1997) The role of transient-evoked otoacoustic emissions testing in the evaluation of elderly persons. Ear Hear 18(4):286–293

    Article  CAS  PubMed  Google Scholar 

  6. Bonfils P, Bertrand Y, Uziel A (1988) Evoked otoacoustic emissions: normative data and presbycusis. Audiology 27:27–35

    Article  CAS  PubMed  Google Scholar 

  7. Castor X, Veuillet E, Morgon A, Collet L (1994) Influence of aging on active cochlear micromechanical properties and on the medial olivocochlear system in humans. Hear Res 77(1–2):1–8

    Article  CAS  PubMed  Google Scholar 

  8. Chan VSW, Wong ECM, McPherson B (2004) Occupational hearing loss: screening with distortion-product otoacoustic emissions. Int J Audiol 43:323–329

    Article  PubMed  Google Scholar 

  9. Collet L, Moulin A, Gartner M, Morgon A (1990) Age-related changes in evoked otoacoustic emissions. Ann Otol Rhinol Laryngol 99:993–997

    CAS  PubMed  Google Scholar 

  10. Dhooge I, Dhooge C, Geukens S, De Clerk B, De Vel E, Vinck BM (2006) Distortion product otoacoustic emissions: an objective technique for the screening of hearing loss in children treated with platin derivates. Int J Audiol 45:337–343

    Article  PubMed  Google Scholar 

  11. Dorn PA, Piskorski P, Keefe DH, Neely ST, Gorga MP (1998) On the existence of an age/threshold/frequency interaction in distortion product otoacoustic emissions. J Acoust Soc Am 104(2):964–971

    Article  CAS  PubMed  Google Scholar 

  12. Gates GA, Mills D, Nam B, D’Agostino R, Rubel EW (2002) Effects of age on the distortion product otoacoustic emission growth functions. Hear Res 163:53–60

    Article  PubMed  Google Scholar 

  13. Hall AJ, Lutman ME (1999) Methods for early identification of noise-induced hearing losses. Audiology 38:277–280

    Article  CAS  PubMed  Google Scholar 

  14. He NJ, Schmiedt RA (1996) Effect of aging on the fine structure of the 2f1–f2 acoustic distortion product. J Acoust Soc Am 99(2):1002–1015

    Article  CAS  PubMed  Google Scholar 

  15. Hoth S (1996) Der Einfluß von Innenohrhörstörungen auf verzögerte otoakustische Emissionen (TEOAE) und Distorsionsprodukte (DPOAE) (The influence of inner ear hearing loss on transitory evoked and distortion product otoacoustic emissions). Laryngol Rhinol Otol 75:709–718

    Article  CAS  Google Scholar 

  16. Hoth S, Polzer M, Neumann K, Plinkert P (2007) TEOAE amplitude growth, detectability, and response threshold in linear and nonlinear mode and in different time windows. Int J Audiol 46:407–418

    Article  PubMed  Google Scholar 

  17. ISO 7029 (2001) Acoustics: statistical distribution of hearing thresholds as a function of age. German version EN 7029:2000. Beuth, Berlin

  18. Kimberley BP, Hernadi I, Lee AM, Brown DK (1994) Predicting pure tone thresholds in normal and hearing-impaired ears with distortion product emission and age. Ear Hear 15:199–209

    Article  CAS  PubMed  Google Scholar 

  19. Kon K, Inagaki M, Kaga M (2000) Developmental changes of distortion product and transient evoked emissions in different age groups. Brain Dev 22(1):41–46

    Article  CAS  PubMed  Google Scholar 

  20. Konopka W, Pawlaczyk-Lusczynska M, Sliwinska-Kowalska M, Grzanka A, Zalewski P (2005) Effects of impulse noise on transiently evoked otoacoustic emission in soldiers. Int J Audiol 44:3–7

    Article  PubMed  Google Scholar 

  21. Lapsley Miller JA, Marshall L, Heller LM (2004) A longitudinal study of changes in evoked otoacoustic emissions and pure-tone thresholds as measured in a hearing conservation program. Int J Audiol 43:307–322

    Article  PubMed  Google Scholar 

  22. Lapsley Miller JA, Marshall L, Heller LM, Hughes LM (2006) Low-level otoacoustic emissions may predict susceptibility to noise-induced hearing loss. J Acoust Soc Am 120(1):280–296

    Article  PubMed  Google Scholar 

  23. Lonsbury-Martin BL, Cutler WM, Martin GK (1991) Evidence for the influence of aging on distortion-product otoacoustic emissions in humans. J Acoust Soc Am 89(4):1749–1759

    Article  CAS  PubMed  Google Scholar 

  24. Lucertini M, Moleti A, Sisto R (2002) On the detection of early cochlear damage by otoacoustic emission analysis. J Acoust Soc Am 111(2):972–978

    Article  CAS  PubMed  Google Scholar 

  25. Morant-Ventura A, Marco Algarra J, Sequi Canet J, Caballero Mallea A, Mir Planas B (1999) Modifications of evoked otoacoustic emissions: study of age groups. Acta Otorrinolaringol Esp 50(5):355–358

    CAS  PubMed  Google Scholar 

  26. Oeken J, Lenk A, Bootz F (2000) Influence of age and presbyacusis on DPOAE. Acta Otolaryngol 120:396–403

    Article  CAS  PubMed  Google Scholar 

  27. Plinkert PK, Hemmert W, Wagner W, Just K, Zenner HP (1999) Monitoring noise susceptibility: sensitivity of otoacoustic emissions and subjective audiometry. Br J Audiol 33:367–382

    CAS  PubMed  Google Scholar 

  28. Plinkert PK, Hemmert W, Zenner HP (1995) Methodenvergleich zur Früherkennung einer Lärmvulnerabilität des Innenohres (A comparison of different audiometric methods for early detection of a vulnerable cochlea). HNO 43:89–97

    CAS  PubMed  Google Scholar 

  29. Prieve BA, Falter SR (1995) COAEs and SSOAEs in adults with increased age. Ear Hear 16:521–528

    Article  CAS  PubMed  Google Scholar 

  30. Probst R, Harris FP (1997) Otoacoustic emissions. In: Alford BR, Jerger J, Jenkins HA (eds) Electrophysiologic evaluation in otolaryngology. Adv Otolaryngol 53. Karger, Basel, pp 182–204

  31. Satoh Y, Kanzaki J, O-Uchi T, Yoshihara S (1998) Age-related changes in transiently evoked otoacoustic emissions and distortion product otoacoustic emissions in normal hearing ears. Auris Nasus Larynx 25(2):121–130

    Article  CAS  PubMed  Google Scholar 

  32. Schmuziger N, Patscheke J, Probst R (2007) An assessment of threshold shifts in nonprofessional pop/rock musicians using conventional and extended high-frequency audiometry. Ear Hear 28(5):643–648

    Article  PubMed  Google Scholar 

  33. Schmuziger N, Probst R, Smurzynski J (2005) Otoacoustic emissions and extended high-frequency hearing sensitivity in young adults. Int J Audiol 44:24–30

    Article  PubMed  Google Scholar 

  34. Stavroulaki P, Apostolopoulos N, Segas J, Tsakanikos M, Adamopoulos G (2001) Evoked otoacoustic emissions—an approach for monitoring cisplatin-induced ototoxicity in children. Int J Ped Otorhinolaryngol 59:47–57

    Article  CAS  Google Scholar 

  35. Stenklev NC, Laukli E (2003) Transient evoked otoacoustic emissions in the elderly. Int J Audiol 42:132–139

    Article  PubMed  Google Scholar 

  36. Stover L, Norton SJ (1993) The effects of aging on otoacoustic emissions. J Acoust Soc Am 94(5):2670–2681

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the valuable comments and recommendations of Prof. Dr. Rudolf Probst who left his initial role as an anonymous reviewer and contributed substantially to the final version of this paper.

Conflict of interest statement

The authors declare that they do not have any financial relationship to organizations that might have sponsored the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Hoth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoth, S., Gudmundsdottir, K. & Plinkert, P. Age dependence of otoacoustic emissions: the loss of amplitude is primarily caused by age-related hearing loss and not by aging alone. Eur Arch Otorhinolaryngol 267, 679–690 (2010). https://doi.org/10.1007/s00405-009-1106-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-009-1106-5

Keywords

Navigation