Skip to main content

Advertisement

Log in

Metal-proteinase ADAM12, kinesin 14 and checkpoint suppressor 1 as new molecular markers of laryngeal carcinoma

  • Review Article
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

The assessment of gene expression profile in laryngeal cancer allows implementation of molecular biology methods in diagnostics, as well as in prognosticating the course of disease, thus allowing taking most optimal decisions as regards the method of treatment, scope of surgical procedure, or the necessity of adding complementary radiotherapy. The aim of the project was to analyze the gene expression profile in laryngeal cancer using oligonucleotide microarrays, having in mind searching new molecular markers for that carcinoma. The study comprised a group of 43 patients (38 males and 5 females) suffering from squamous cell laryngeal carcinoma, diagnosed and surgically treated in the years 2005–2007 in the ENT Department of the Silesian Medical University in Katowice, Poland. RNA was isolated from frozen tissue fragments, with the use of columns RNeasy Midi and Mini Kit (Qiagen). For the examination of gene expression profile, oligonucleotide microarrays of high density were used, provided by Affymetrix (U 133 2.0 PLUS) containing over 54,000 probes for over 47,000 transcripts. Four genes previously not examined in that respect in laryngeal carcinoma, occurred to be good markers of the neoplasm. They are: metal-proteinase ADAM12, cyclin-dependent kinase 2–CDK2, kinesin 14–KIF14, suppressor 1 of checkpoint–CHES1. The analysis of gene expression profile allows, in laryngeal carcinoma, to point out to new genes, which in future may become molecular markers of the carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dysvik B, Vasstrand EN, Lovlie R, Elgindi OA, Kross KW, Aarstad HJ et al (2006) Gene expression profiles of head and neck carcinomas from Sudanese and Norwegian patients reveal common biological pathways regardless of race and lifestyle. Clin Cancer Res 12(4):1109–1120

    Article  PubMed  CAS  Google Scholar 

  2. Perez-Ordonez B, Beauchemin M, Jordan RC (2006) Molecular biology of squamous cell carcinoma of the head and neck. J Clin Pathol 59(5):445–453

    Article  PubMed  CAS  Google Scholar 

  3. Pyeon D, Newton MA, Lambert PF, den Boon JA, Sengupta S, Marsit CJ et al (2007) Fundamental differences in cell cycle deregulation in human papillomavirus-positive and human papillomavirus-negative head/neck and cervical cancers. Cancer Res 67(10):4605–4619

    Article  PubMed  CAS  Google Scholar 

  4. Lee TL, Yang XP, Yan B, Friedman J, Duggal P, Bagain L et al (2007) A novel nuclear factor-kappaB gene signature is differentially expressed in head and neck squamous cell carcinomas in association with TP53 status. Clin Cancer Res 13(19):5680–5691

    Article  PubMed  CAS  Google Scholar 

  5. Yan B, Yang X, Lee TL, Friedman J, Tang J, Van WC et al (2007) Genome-wide identification of novel expression signatures reveal distinct patterns and prevalence of binding motifs for p53, nuclear factor-kappaB and other signal transcription factors in head and neck squamous cell carcinoma. Genome Biol 8(5):R78

    Article  PubMed  Google Scholar 

  6. Chung CH, Parker JS, Ely K, Carter J, Yi Y, Murphy BA et al (2006) Gene expression profiles identify epithelial-to-mesenchymal transition and activation of nuclear factor-kappaB signaling as characteristics of a high-risk head and neck squamous cell carcinoma. Cancer Res 66(16):8210–8218

    Article  PubMed  CAS  Google Scholar 

  7. Ferris RL, Grandis JR (2007) NF-kappaB gene signatures and p53 mutations in head and neck squamous cell carcinoma. Clin Cancer Res 13(19):5663–5664

    Article  PubMed  CAS  Google Scholar 

  8. Akervall J (2006) Genomic screening of head and neck cancer and its implications for therapy planning. Eur Arch Otorhinolaryngol 263(4):297–304

    Article  PubMed  Google Scholar 

  9. Belbin TJ, Singh B, Smith RV, Socci ND, Wreesmann VB, Sanchez-Carbayo M et al (2005) Molecular profiling of tumor progression in head and neck cancer. Arch Otolaryngol Head Neck Surg 131(1):10–18

    Article  PubMed  Google Scholar 

  10. Jarvinen AK, Autio R, Haapa-Paananen S, Wolf M, Saarela M, Grenman R et al (2006) Identification of target genes in laryngeal squamous cell carcinoma by high-resolution copy number and gene expression microarray analyses. Oncogene 25(52):6997–7008

    Article  PubMed  Google Scholar 

  11. Gottschlich S, Ambrosch P, Cordes C, Gorogh T, Schreiber S, Hasler R (2006) Gene expression profiling of head and neck squamous cell carcinoma using cDNA microarrays. Int J Oncol 29(3):605–613

    PubMed  CAS  Google Scholar 

  12. Al Moustafa AE, Alaoui-Jamali MA, Batist G, Hernandez-Perez M, Serruya C, Alpert L et al (2002) Identification of genes associated with head and neck carcinogenesis by cDNA microarray comparison between matched primary normal epithelial and squamous carcinoma cells. Oncogene 21(17):2634–2640

    Article  PubMed  Google Scholar 

  13. Choi P, Chen C (2005) Genetic expression profiles and biologic pathway alterations in head and neck squamous cell carcinoma. Cancer 104(6):1113–1128

    Article  PubMed  CAS  Google Scholar 

  14. Thomas GR, Nadiminti H, Regalado J (2005) Molecular predictors of clinical outcome in patients with head and neck squamous cell carcinoma. Int J Exp Pathol 86(6):347–363

    Article  PubMed  CAS  Google Scholar 

  15. Hussein MR, Cullen K (2001) Molecular biomarkers in HNSCC: prognostic and therapeutic implications. Expert Rev Anticancer Ther 1(1):116–124

    Article  PubMed  CAS  Google Scholar 

  16. Ziober AF, Patel KR, Alawi F, Gimotty P, Weber RS, Feldman MM et al (2006) Identification of a gene signature for rapid screening of oral squamous cell carcinoma. Clin Cancer Res 12(20 Pt 1):5960–5971

    Article  PubMed  CAS  Google Scholar 

  17. Markowski J, Oczko-Wojciechowska M, Gierek T, Jarzab M, Paluch J, Kowalska M, Wygoda Z, Pfeifer A, Tyszkiewicz T, Jarzab B, Niedzielska I, Borgiel-Marek H (2009) Gene expression profile analysis in laryngeal cancer by high-density oligonucleotide microarrays. J Physiol Pharmacol 60(suppl. 1):57–63

    PubMed  Google Scholar 

  18. Wu E, Croucher PI, McKie N (1997) Expression of members of the novel membrane linked metalloproteinase family ADAM in cells derived from a range of haematological malignancies. Biochem Biophys Res Commun 235(2):437–442

    Article  PubMed  CAS  Google Scholar 

  19. Carl-McGrath S, Lendeckel U, Ebert M, Roessner A, Rocken C (2005) The disintegrin-metalloproteinases ADAM9, ADAM12, and ADAM15 are upregulated in gastric cancer. Int J Oncol 26(1):17–24

    PubMed  CAS  Google Scholar 

  20. Dyczynska E, Syta E, Sun D, Zolkiewska A (2008) Breast cancer-associated mutations in metalloprotease disintegrin ADAM12 interfere with the intracellular trafficking and processing of the protein. Int J Cancer 122(11):2634–2640

    Article  PubMed  CAS  Google Scholar 

  21. Kodama T, Ikeda E, Okada A, Ohtsuka T, Shimoda M, Shiomi T et al (2004) ADAM12 is selectively overexpressed in human glioblastomas and is associated with glioblastoma cell proliferation and shedding of heparin-binding epidermal growth factor. Am J Pathol 165(5):1743–1753

    PubMed  CAS  Google Scholar 

  22. Chang JT, Wang HM, Chang KW, Chen WH, Wen MC, Hsu YM et al (2005) Identification of differentially expressed genes in oral squamous cell carcinoma (OSCC): overexpression of NPM, CDK1 and NDRG1 and underexpression of CHES1. Int J Cancer 114(6):942–949

    Article  PubMed  CAS  Google Scholar 

  23. Pehlivan D, Gunduz E, Gunduz M, Nagatsuka H, Beder LB, Cengiz B et al (2008) Loss of heterozygosity at chromosome 14q is associated with poor prognosis in head and neck squamous cell carcinomas. J Cancer Res Clin Oncol 134(12):1267–1276

    Article  PubMed  Google Scholar 

  24. Scott KL, Plon SE (2005) CHES1/FOXN3 interacts with Ski-interacting protein and acts as a transcriptional repressor. Gene 359:119–126

    Article  PubMed  CAS  Google Scholar 

  25. Corson TW, Huang A, Tsao MS, Gallie BL (2005) KIF14 is a candidate oncogene in the 1q minimal region of genomic gain in multiple cancers. Oncogene 24(30):4741–4753

    Article  PubMed  CAS  Google Scholar 

  26. Corson TW, Gallie BL (2006) KIF14 mRNA expression is a predictor of grade and outcome in breast cancer. Int J Cancer 119(5):1088–1094

    Article  PubMed  CAS  Google Scholar 

  27. Corson TW, Zhu CQ, Lau SK, Shepherd FA, Tsao MS, Gallie BL (2007) KIF14 messenger RNA expression is independently prognostic for outcome in lung cancer. Clin Cancer Res 13(11):3229–3234

    Article  PubMed  CAS  Google Scholar 

  28. Yilmaz T, Hosal AS, Gedikoglu G, Kaya S (1999) Prognostic significance of histopathological parameters in cancer of the larynx. Eur Arch Otorhinolaryngol 256(3):139–144

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Project financed by grant of Polish Ministry of Science and Higher Education No. 3 PO5B 11225. We acknowledge the help of Aleksandra Pfeifer MSc, in the preparation of figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarosław Markowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markowski, J., Tyszkiewicz, T., Jarząb, M. et al. Metal-proteinase ADAM12, kinesin 14 and checkpoint suppressor 1 as new molecular markers of laryngeal carcinoma . Eur Arch Otorhinolaryngol 266, 1501–1507 (2009). https://doi.org/10.1007/s00405-009-1019-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-009-1019-3

Keywords

Navigation