Skip to main content
Log in

Vocal fold vibration irregularities caused by different types of laryngeal asymmetry

  • Laryngology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

The common symptom of hoarseness is regarded to be caused by (1) turbulences and air loss due to incomplete glottic closure and (2) irregular vibrations of the vocal folds. With real time resolution, the latter can only be observed using high-speed recording techniques (≥2,000 images/s). In this paper an actual recording method is described, called high-speed glottography (HGG), which quantifies vibration irregularities. It combines imaging and image processing techniques with a functional endoscopy of the disordered voice and delivers motion curves separately for each vocal fold. They are fitted with a computer simulation in order to identify the underlying driving parameters of the vibration. A vocal fold is assumed to vibrate as a system of two coupled oscillators ("two-mass model"). From the model fit to bilateral motion curves, the subglottal pressure, muscular tension and oscillating masses of the vocal folds can be computed with reasonable accuracy. Besides normal voices, HGG has been applied to selected clinical cases of voice disorders. Two types of irregularities have been measured: there is a frequency difference either between left and right vocal folds (horizontal asymmetry) or on one side between the ventral and dorsal third (vertical asymmetry). By modeling, both categories of irregular motion curves can be explained in detail. It is presumed that laryngeal asymmetry (either in mass or tension) causes irregular vibrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. Döllinger M, Hoppe U, Hettlich F, Lohscheller J, Schuberth S, Eysholdt U (2002) Vibration parameter extraction from endoscopic image series of the vocal folds. IEEE Trans Biomed Eng 49: 773–781

    Article  PubMed  Google Scholar 

  2. Döllinger M, Braunschweig T, Lohscheller J, Eysholdt U, Hoppe U (2003) Normal voice production: computation of driving parameters from endoscopic digital high-speed images. Meth Informat Med (in press)

    Google Scholar 

  3. Eysholdt U (1998) Subjective and objective assessment of hoarseness. Laryngol Rhinol Otol 77: 643–645

    Google Scholar 

  4. Eysholdt U, Tigges M, Wittenberg T, Pröschel U (1996) Direct evaluation of high-speed recordings of vocal fold vibration. Folia Phoniatr Logop 48: 163–170

    CAS  PubMed  Google Scholar 

  5. Gall V, Gall D, Hanson J (1971) Larynx-Fotokymographie. Arch Ohr Nas Kehlk Heilk 200: 34–41

    CAS  Google Scholar 

  6. Groß M (1986) Endoskopische Larynxfotokymographie. Habilitation Mainz, RGV Bingen

  7. Hanson DG, d'Agostino MM, Jiang J, Herzon G (1995) Clinical measurement of mucosal wave velocity using simultaneous photoglottography and laryngostroboscopy. Ann Otol Rhinol Laryngol 104: 340–349

    CAS  PubMed  Google Scholar 

  8. Hirano M (1981) Clinical examination of voice. Springer Wien Berlin Heidelberg New York, ISBN 3-211-81659-3

  9. Hoppe U (2001) Mechanisms of hoarseness—visualization and interpretation by means of nonlinear dynamics. Shaker, Aachen, ISBN 3-8265-9193-3

  10. Ishizaka K, Flanagan JL (1972) Synthesis of voiced sounds from a two-mass model of the vocal cords. Bell Syst Techn J 51: 1233–1268

    Google Scholar 

  11. Mergell P (1998) Nonlinear dynamics of phonation—highspeed glottography and biomechanical modeling of vocal fold oscillations. Shaker, Aachen, ISBN 3-8265-4142-1

  12. Mergell P, Herzel HP, Tigges M, Eysholdt U (1998) Phonation onset: highspeed glottography and modelling. US National Centre for Voice and Speech, Status and progress report 12: 55–63

    Google Scholar 

  13. Mergell P, Herzel HP, Tigges M, Wittenberg T, Eysholdt U (1998) Beobachtung und Modellierung von Grundfrequenz-Formant-Resonanzen. In: Gross M (ed) Aktuelle phoniatrisch-Pädaudiologische Aspekte 1997/98. Median, Heidelberg, pp 32–37, ISBN 3-922766-35-8

  14. Mergell P, Herzel HP, Wittenberg T, Tigges M, Eysholdt U (1997) Quantitative laryngoscopy combining high speed glottography and nonlinear dynamics, pp 47–50 in Proc Larynx, Marseille

  15. Mergell P, Herzel HP, Wittenberg T, Tigges M, Eysholdt U (1998) Phonation onset: vocal fold modeling and high speed glottography. J Acoust Soc Amer 104: 464–470

    Article  CAS  Google Scholar 

  16. Mergell P, Tigges M, Herzel HP, Wittenberg T, Eysholdt U (1996) Simulation glottaler Biphonation mit dem 2-Massen-Modell. In: M Gross, U. Eysholdt (eds) Aktuelle phoniatrisch-pädaudiologische Aspekte, Band 4, ISBN 3-980-1572-5-3, Phoniatrie Göttingen, pp 13–14

  17. Michaelis D, Gramss T, Strube HW (1997) Glottal-to-noise excitation ratio – a new measure for describing pathological voices. Acustica 83: 700–706

    Google Scholar 

  18. Neubauer J, Mergell P, Eysholdt U, Herzel HP (2001) Spatio-temporal analysis of irregular vocal fold oscillations: biphonation due to desynchronization of spatial modes, J Acoust Soc Amer 110: 3179 - 3192

    Google Scholar 

  19. Schade G, Hess M, Rassow B (2002) Möglichkeit endolaryngealer morphometrischer Messungen mit einem neuen Laserlichtverfahren, HNO 50: 753–755

  20. Schuberth S, Hoppe U, Döllinger M, Lohscheller J, Eysholdt U (2002) High precision measurement of the vocal fold length and vibratory amplitudes, Laryngoscope 112: 1043–1049

    PubMed  Google Scholar 

  21. Schultz-Coulon HJ (1990) Mikrofotokymographie des Kehlkopfs, Sprache-Stimme-Gehör 14: 4–10

  22. Schutte HK, Svec JG, Sram F (1998) First results of clinical application of videokymography. Laryngoscope 108: 1206–1210

    CAS  PubMed  Google Scholar 

  23. Steinecke I, Herzel HP (1995) Bifurcations in an asymmetric vocal fold model. J Acoust Soc Amer 97: 1874–1884

    CAS  Google Scholar 

  24. Streim H, Paconcelli-Calzia G (1915) Inwieweit Ausmessungen von kymographischen Tonhöhen-Aufnahmen mit der Wirklichkeit übereinstimmen. Vox 25: 1–272

    Google Scholar 

  25. Tigges M (1999) Die Hochgeschwindigkeitsaufnahmetechnik des Kehlkopfes. Shaker, Aachen, ISBN 3-8265-6794-3

  26. Tigges M, Mergell P, Herzel HP, Wittenberg T, Eysholdt U (1997) Observation and modelling of biphonation. Acustica 83: 707–713

    Google Scholar 

  27. Tigges M, Wittenberg T, Mergell P, Eysholdt U (1999) Imaging of vocal fold vibration by digital multi-plane kymography, Comput Med Imag Graph 23: 323–330

    Article  CAS  Google Scholar 

  28. Tigges M, Wittenberg T, Rosanowski F, Eysholdt U (1996) Highspeed imaging and image processing in voice disorders. In: Foth H, Marchesini R, Podbielska H (eds) Optical and imaging techniques for biomonitoring II. SPIE Washington, pp 209–216

  29. Wittenberg T (1998) Wissenbasierte Bewegungsanalyse von Stimmlippenschwingungen anhand digitaler Hochgeschwindigkeitsaufnahmen. Shaker, Aachen, ISBN 3-8265-4143-X

  30. Wittenberg T, Mergell P, Tigges M, Eysholdt U (1996) Highspeedglottography with a flexible endoscope for the examination of the human larynx during running speech. In: Lehmann T, Scholl I, Spitzer K (eds) Bildverarbeitung für die Medizin: Algorithmen, Systeme, Anwendungen. Shaker, Aachen, pp 119–124

  31. Wittenberg T, Moser M, Tigges M, Eysholdt U (1995) Analyse des Stimmeinsatzes mittels digitaler Hochgeschwindigkeitsglottographie. In: Arnold W, Hirsekorn S (eds) Fortschritte der Akustik 21. DAGA 95, Oldenburg, pp 1023–1026

  32. Wittenberg T, Moser M, Tigges M, Eysholdt U (1995) Recording, processing and analysis of digital highspeed-glottography sequences. Mach Vis Applic 8: 399–404

    Article  Google Scholar 

  33. Wittenberg T, Tigges M, Mergell P, Eysholdt U (1997) Quantitative characterization of functional voice disorders using motion analysis of highspeed video and modeling. Proc ICASSP 97, vol 3, München, pp 1663–1665

  34. Wittenberg T, Tigges M, Mergell P, Eysholdt U (2000) Digital multislice high-speed kymography. J Voice 14: 422–442

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to the DFG (Deutsche Forschungsgemeinschaft, German Research Council) for taking the risk, in spite of critical reviewer comments, to grant the following projects: DFG Ey15/4, DFG Ey15/6, DFG Ey15/7 and DFG Ey15/10. Fruitful comments and auxiliary services have been given by Dr.-Ing. Dipl.Math. M. Döllinger, Dr. med. P. Kummer, Dipl.-Ing. J. Lohscheller and Dr. med. M. Schuster.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Eysholdt.

Additional information

This study was partly presented at the 4th ELS Congress in Brussels, 5–7 September 2002.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eysholdt, U., Rosanowski, F. & Hoppe, U. Vocal fold vibration irregularities caused by different types of laryngeal asymmetry. Eur Arch Otorhinolaryngol 260, 412–417 (2003). https://doi.org/10.1007/s00405-003-0606-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-003-0606-y

Keywords

Navigation