Skip to main content
Log in

Descriptive growth model of the height of stapes in the fetus: a histopathological study of the temporal bone

  • Otology
  • Published:
European Archives of Oto-Rhino-Laryngology and Head & Neck Aims and scope Submit manuscript

Abstract

Temporal bone histological findings can be evaluated from several points of view. The most basic consists of a description of the characteristics and abnormalities of particular temporal bones. The second one is the measurement of various structures in a larger set of temporal bones and the monitoring of these structures over time. The height of stapes was measured in a set of 40 temporal bones from 27 fetuses, and the growth of stapes from the 13th to 36th weeks of pregnancy was determined. A computer-assisted nonlinear regression analysis of diagnostics enabling simultaneous examination of data (influential points, i.e., outliers and leverages) was carried out, a growth curve model proposed and a mathematical method with Ratkowski criteria for estimation applied to find the best descriptive model of the height of stapes versus time y=f(x) growth curve; the results of 13 growth models were examined. It was found that the maximum growth of the height of stapes was between the 13th and the 24th weeks of pregnancy. The average height of stapes was 1.05 mm in the 13th week and 2.6 mm in the 24th week. Later, after the 25th week, the growth of the height of stapes was slower, and the average height in the 30th week was 3.0 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. Adstat 2.0 Statistical package, Pardubice: TriloByte Statistical Software, 1999

  2. Anson BJ, Donaldson JA (1992) Surgical anatomy of the temporal bone, part 2. Raven Press, New York, pp 26–30

  3. Bardsley WG, Ackerman RA, Bukhari NAS, Deming DC, Ferguson MWJ (1995) Mathematical models for growth in alligator embryos developing at different incubation temperatures. J Anat 187: 181–190

    PubMed  Google Scholar 

  4. Bock RD, Thissen D (1976) Fitting multi-component models for growth in stature. Proceedings of the 9th international biometric conference 1: 431–442

    Google Scholar 

  5. Clutter JL, Fortson JC, Pienaar LV, Brister GH, Bailey RL (1983) Timber management: a quantitative approach. Wiley, New York, p 333

    Google Scholar 

  6. Dalgaard P, Koutsoumanis K (2001) Comparison of maximum specific growth rates and lag times estimated from absorbance and viable count data by different mathematical models. J Microbiol Meth 43: 183–196

    Article  CAS  Google Scholar 

  7. Elfving B, Kiviste A (1997) Construction of site index equations for Pinus sylvestris L. using permanent plot data in Sweden. Forest Ecol Manag 98: 125–134

    Article  Google Scholar 

  8. Gamito S (1998) Growth models and their use in ecological modelling. Ecolog Modelling 113: 83–94

    Article  Google Scholar 

  9. Gompertz B, Philos T (1825) Roy Soc London 115: 513

    Google Scholar 

  10. Jolicoeur P, Pontier J, Pernin MO, Sempé M (1988) A lifetime asymptotic growth curve for human height. Biometrics 44: 995–1003

    CAS  PubMed  Google Scholar 

  11. Kuzmitschev VV (1977) Stand growth regularities (in Russian). Novosibirsk, p 160

  12. Lebert I, Robles-Olvera V, Lebert A (2000) Application of polynomial models to predict growth of mixed cultures of Pseudomonas spp. and Listeria in meat. Int J Food Microbiol 61: 27–39

    Google Scholar 

  13. Ledford AW, Cole TJ (1998) Mathematical models of growth in stature throughout childhood. Ann Hum Biol 25: 101–115

    CAS  PubMed  Google Scholar 

  14. Meloun M, Militký J, Forina M (1992) Chemometrics for analytical chemistry, vol 1, PC-Aided statistical data analysis. Ellis Horwood, Chichester

  15. Meloun M, Militký J (1996) Sbírka úloh, Statistické zpracování experimentálních dat. Pardubice: Universita Pardubice

  16. Mitscherlich EA (1919) Das Gesetz des Pflanzenwachstums. Landwirtsch Jahrb 53: 167–182

    Google Scholar 

  17. Nandapalan V, Tos M (2000) Isolated congenital stapes ankylosis: an embryologic survey and literature review. Am J Otol 21: 71–80

    CAS  PubMed  Google Scholar 

  18. Pauw BKH, Pollak AM, Fisch U (1991) Utricule, saccule, and cochlear duct in relation to stapedotomy. Ann Otol Rhinol Laryngol 100: 966–970

    CAS  PubMed  Google Scholar 

  19. Peschel W (1938) Die mathematische Methoden zur Herleitung der Wachstumsgesetze von Baum and bestand und die Ergebnisse ihrer Anwendung. Tharandter Forstl Jahrb 89: 169–247

    Google Scholar 

  20. Preece MA, Baines MJ (1978) A new family of mathematical models describing the human growth curve. Ann Hum Biol 5: 1–24

    CAS  PubMed  Google Scholar 

  21. Prodan M (1968) Forest biometrics. London, p 447

  22. Ratkowski DA (1983) Nonlinear regression modeling: a unified practical approach. Marcel Dekker, New York

    Google Scholar 

  23. Ratkowski DA (1993) Principles of nonlinear regression modeling. J Ind Microbiol 12: 195–199

    Google Scholar 

  24. Reynolds K (1995) Forest height growth modelling. Forest Ecol Manag 71: 217–255

    Article  Google Scholar 

  25. Richards FJ (1959) A flexible growth function for empirical use. J Exp Bot 10: 290–300

    Google Scholar 

  26. Schepers AW, Thibault J, Lacroix C (2000) Comparison of simple neural networks and nonlinear regression models for descriptive modeling of Lactobacillus helveticus growth in pH-controlled batch cultures. Enzyme Microb Tech 26: 431–445

    Article  CAS  Google Scholar 

  27. Schnute J (1981) A versatile growth model with statistically stable parameters. Can J Fish Aquat Sci 38: 1128–1140

    Google Scholar 

  28. Schuknecht HF (1993) Pathology of the ear. Lea and Febiger, Malvern, p 33

  29. Shohoji T, Sasaki H (1979) Individual growth of Japanese. Growth 51: 432–450

    Google Scholar 

  30. Suslick SB, Harris DP, Allan LHE (1995) SERFIT: an algorithm to forecast mineral trends. Computers Geosci 21: 703–713

    Article  Google Scholar 

  31. Todorovic D (1961) Tree growth laws and their mathematical equations. Thesis, Belgrad, p 206

  32. Weber R (1897) Heber die Gesetzmässigkeit im Zuwachsgange einiger Holzarten, auf Grund neuerer Ertragstefeln. Allg Forst U Jagdztg: 185–196

    Google Scholar 

  33. Wenk G (1973) Mathematische Formulierung von Wachsturmsprozessen. Biom Z 15: 345–362

    Google Scholar 

Download references

Acknowledgements

This paper was supported by a research grant from the Ministry of Health of the Czech Republic, grant no. IGA MZ 6189-3 and by the Grant Agency of the Czech Republic, grant no. 303/00/1559.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Meloun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chrobok, V., Meloun, M. & Šimáková, E. Descriptive growth model of the height of stapes in the fetus: a histopathological study of the temporal bone. Eur Arch Otorhinolaryngol 261, 25–29 (2004). https://doi.org/10.1007/s00405-003-0580-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-003-0580-4

Keywords

Navigation