Skip to main content
Log in

Developmental competence and neonatal outcomes of nonpronuclear zygotes following single vitrified-warmed blastocyst transfers using propensity score matching analysis

  • Gynecologic Endocrinology and Reproductive Medicine
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

To investigate developmental competence and neonatal outcomes of nonpronuclear (0PN) zygotes following single vitrified-warmed blastocyst transfers (VBT).

Methods

The clinical, laboratorial and neonatal data of 996 patients with ≤ 38 years who underwent blastocyst culture and single VBT were retrospectively analyzed. The pregnancy and neonatal outcomes of VBT were compared between 0PN and 2PN blastocysts using propensity score matching (PSM). Moreover, Day 3 (D3) embryo development and blastocyst formation were compared between 0PN and 2PN zygotes.

Results

There were no significant differences in clinical pregnancy rate (CPR), live birth rate (LBR) and neonatal outcomes of VBT between the 0PN and 2PN blastocysts irrespectively of whether PSM was used. However, early abortion rate (EAR) was higher in blastocysts from 0PN D3 embryos > 10 cells (p < 0.05) before PSM. Moreover, the early developmental competence of 0PN zygotes was different from that of 2PN zygotes presenting higher percentages of D3 embryos ≤ 6 cells (p < 0.01) and > 10 cells (p < 0.01), lower available blastocyst formation rate (ABFR) (p < 0.01) and good-quality blastocyst formation rate (GBFR) (p < 0.01) in D3 embryos with 4–6 cells. ABFR and GBFR increased with cell number when compared among embryos with 4–6 cells, 7–10 cells and > 10 cells, irrespectively of 0PN or 2PN embryos.

Conclusion

The early developmental competence of 0PN zygotes was different from that of 2PN zygotes, but did not influence pregnancy and neonatal outcomes following VBT. ABFR and GBFR increased with cell number, irrespectively of 0PN or 2PN embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

All relevant data are within the paper.

References

  1. Simopoulou M, Sfakianoudis K, Maziotis E et al (2021) PGT-A: who and when? Α systematic review and network meta-analysis of RCTs. J Assist Reprod Genet 38:1939–1957. https://doi.org/10.1007/s10815-021-02227-9

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zhang WY, von Versen-Höynck F, Kapphahn KI et al (2019) Maternal and neonatal outcomes associated with trophectoderm biopsy. Fertil Steril 112:283-290.e2. https://doi.org/10.1016/j.fertnstert.2019.03.033

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rosenbusch B (2014) The chromosomal constitution of embryos arising from monopronuclear oocytes in programmes of assisted reproduction. Int J Reprod Med 2014:418198. https://doi.org/10.1155/2014/418198

    Article  PubMed  PubMed Central  Google Scholar 

  4. Alpha Scientists in Reproductive Medicine and ESHRE Special Interest Group of Embryology (2011) The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Hum Reprod 26:1270–1283. https://doi.org/10.1093/humrep/der037

    Article  Google Scholar 

  5. Racowsky C, Stern JE, Gibbons WE et al (2011) National collection of embryo morphology data into society for assisted reproductive technology clinic outcomes reporting system: associations among day 3 cell number, fragmentation and blastomere asymmetry, and live birth rate. Fertil Steril 95:1985–1989. https://doi.org/10.1016/j.fertnstert.2011.02.009

    Article  PubMed  Google Scholar 

  6. Tian L, Xia L, Liu H et al (2022) Increased blastomere number is associated with higher live birth rate in day 3 embryo transfer. BMC Pregnancy Childbirth 22:198. https://doi.org/10.1186/s12884-022-04521-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pons MC, Carrasco B, Parriego M et al (2019) Deconstructing the myth of poor prognosis for fast-cleaving embryos on day 3. Is it time to change the consensus? J Assist Reprod Genet 36:2299–2305. https://doi.org/10.1007/s10815-019-01574-y

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wang J, Diao Z, Fang J et al (2022) The influence of day 3 embryo cell number on the clinical pregnancy and live birth rates of day 5 single blastocyst transfer from frozen embryo transfer cycles. BMC Pregnancy Childbirth 22:980. https://doi.org/10.1186/s12884-022-05337-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li M, Lin S, Chen Y et al (2015) Value of transferring embryos that show no evidence of fertilization at the time of fertilization assessment. Fertil Steril 104:607-611.e2. https://doi.org/10.1016/j.fertnstert.2015.05.016

    Article  PubMed  Google Scholar 

  10. Fu L, Chu D, Zhou W, Li Y (2022) Strictly selected Mono- and non-pronuclear blastocysts could result in appreciable clinical outcomes in IVF cycles. Hum Fertil (Camb) 25:470–477. https://doi.org/10.1080/14647273.2020.1815243

    Article  PubMed  Google Scholar 

  11. Fu L, Zhou W, Li Y (2021) Development and frozen-thawed transfer of non-pronuclear zygotes-derived embryos in IVF cycles. Eur J Obstet Gynecol Reprod Biol 264:206–211. https://doi.org/10.1016/j.ejogrb.2021.07.033

    Article  PubMed  Google Scholar 

  12. Yin H, Jiang H, He R et al (2019) Cumulative live birth rate of advanced-age women more than 40 with or without poor ovarian response. Taiwan J Obstet Gynecol 58:201–205. https://doi.org/10.1016/j.tjog.2019.01.006

    Article  PubMed  Google Scholar 

  13. Gardner DK, Lane M, Stevens J et al (2000) Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer. Fertil Steril 73:1155–1158. https://doi.org/10.1016/s0015-0282(00)00518-5

    Article  CAS  PubMed  Google Scholar 

  14. Cummins JM, Breen TM, Harrison KL et al (1986) A formula for scoring human embryo growth rates in in vitro fertilization: its value in predicting pregnancy and in comparison with visual estimates of embryo quality. J In Vitro Fert Embryo Transf 3:284–295. https://doi.org/10.1007/BF01133388

    Article  CAS  PubMed  Google Scholar 

  15. Yang ST, Shi JX, Gong F et al (2015) Cleavage pattern predicts developmental potential of day 3 human embryos produced by IVF. Reprod Biomed Online 30:625–634. https://doi.org/10.1016/j.rbmo.2015.02.008

    Article  CAS  PubMed  Google Scholar 

  16. Yang S-H, Wu C-H, Chen Y-C et al (2018) Effect of morphokinetics and morphological dynamics of cleavage stage on embryo developmental potential: A time-lapse study. Taiwan J Obstet Gynecol 57:76–82. https://doi.org/10.1016/j.tjog.2017.12.013

    Article  PubMed  Google Scholar 

  17. Cecchele A, Cermisoni GC, Giacomini E et al (2022) Cellular and molecular nature of fragmentation of human embryos. Int J Mol Sci 23:1349. https://doi.org/10.3390/ijms23031349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chi H-J, Koo J-J, Choi S-Y et al (2011) Fragmentation of embryos is associated with both necrosis and apoptosis. Fertil Steril 96:187–192. https://doi.org/10.1016/j.fertnstert.2011.04.020

    Article  PubMed  Google Scholar 

  19. Kong X, Yang S, Gong F et al (2016) The relationship between cell number, division behavior and developmental potential of cleavage stage human embryos: a time-lapse study. PLoS ONE 11:e0153697. https://doi.org/10.1371/journal.pone.0153697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Friedenthal J, Pan S, Gounko D et al (2021) Rate of post-fertilization mitotic activity predicts embryonic competence via next generation sequencing: an analysis of 39,301 cleavage stage embryos. JBRA Assist Reprod 25:586–591. https://doi.org/10.5935/1518-0557.20210051

    Article  PubMed  PubMed Central  Google Scholar 

  21. Luna M, Copperman AB, Duke M et al (2008) Human blastocyst morphological quality is significantly improved in embryos classified as fast on day 3 (> or = 10 cells), bringing into question current embryological dogma. Fertil Steril 89:358–363. https://doi.org/10.1016/j.fertnstert.2007.03.030

    Article  PubMed  Google Scholar 

  22. Kirkegaard K, Hindkjaer JJ, Ingerslev HJ (2013) Effect of oxygen concentration on human embryo development evaluated by time-lapse monitoring. Fertil Steril 99:738-744.e4. https://doi.org/10.1016/j.fertnstert.2012.11.028

    Article  PubMed  Google Scholar 

  23. Rubio I, Galán A, Larreategui Z et al (2014) Clinical validation of embryo culture and selection by morphokinetic analysis: a randomized, controlled trial of the embryoscope. Fertil Steril 102:1287-1294.e5. https://doi.org/10.1016/j.fertnstert.2014.07.738

    Article  PubMed  Google Scholar 

  24. Kasterstein E, Strassburger D, Komarovsky D et al (2013) The effect of two distinct levels of oxygen concentration on embryo development in a sibling oocyte study. J Assist Reprod Genet 30:1073–1079. https://doi.org/10.1007/s10815-013-0032-z

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yang Y, Dong X, Bai J et al (2022) Faster fertilization and cleavage kinetics reflect competence to achieve a live birth: data from single-embryo transfer cycles. Biomed Res Int 2022:8501362. https://doi.org/10.1155/2022/8501362

    Article  PubMed  PubMed Central  Google Scholar 

  26. Petersen BM, Boel M, Montag M, Gardner DK (2016) Development of a generally applicable morphokinetic algorithm capable of predicting the implantation potential of embryos transferred on day 3. Hum Reprod 31:2231–2244. https://doi.org/10.1093/humrep/dew188

    Article  PubMed  PubMed Central  Google Scholar 

  27. Perry ACF, Asami M, Lam BYH, Yeo GSH (2022) The initiation of mammalian embryonic transcription: to begin at the beginning. Trends Cell Biol S0962–8924(22):00211–00212. https://doi.org/10.1016/j.tcb.2022.08.008

    Article  CAS  Google Scholar 

  28. Asami M, Lam BYH, Ma MK et al (2022) Human embryonic genome activation initiates at the one-cell stage. Cell Stem Cell 29:209-216.e4. https://doi.org/10.1016/j.stem.2021.11.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Feenan K, Herbert M (2006) Can “abnormally” fertilized zygotes give rise to viable embryos? Hum Fertil 9:157–169. https://doi.org/10.1080/14647270600636269

    Article  Google Scholar 

  30. Paz MV, Chiera M, Hovanyecz P et al (2020) Blastocysts derived from 0pn oocytes: genetic and clinical results. JBRA Assist Reprod 24:143–146. https://doi.org/10.5935/1518-0557.20190084

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kobayashi T, Ishikawa H, Ishii K et al (2021) Time-lapse monitoring of fertilized human oocytes focused on the incidence of 0PN embryos in conventional in vitro fertilization cycles. Sci Rep 11:18862. https://doi.org/10.1038/s41598-021-98312-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Basile N, Morbeck D, García-Velasco J et al (2013) Type of culture media does not affect embryo kinetics: a time-lapse analysis of sibling oocytes. Hum Reprod 28:634–641. https://doi.org/10.1093/humrep/des462

    Article  CAS  PubMed  Google Scholar 

  33. Fragouli E, Munne S, Wells D (2019) The cytogenetic constitution of human blastocysts: insights from comprehensive chromosome screening strategies. Hum Reprod Update 25:15–33. https://doi.org/10.1093/humupd/dmy036

    Article  CAS  PubMed  Google Scholar 

  34. Vega M, Breborowicz A, Moshier EL et al (2014) Blastulation rates decline in a linear fashion from euploid to aneuploid embryos with single versus multiple chromosomal errors. Fertil Steril 102:394–398. https://doi.org/10.1016/j.fertnstert.2014.04.026

    Article  PubMed  Google Scholar 

  35. Du Y, Guan Y, Li N et al (2023) Is it necessary for young patients with recurrent implantation failure to undergo preimplantation genetic testing for aneuploidy? Front Endocrinol 14:1020055. https://doi.org/10.3389/fendo.2023.1020055

    Article  Google Scholar 

  36. Minasi MG, Colasante A, Riccio T et al (2016) Correlation between aneuploidy, standard morphology evaluation and morphokinetic development in 1730 biopsied blastocysts: a consecutive case series study. Hum Reprod 31:2245–2254. https://doi.org/10.1093/humrep/dew183

    Article  PubMed  Google Scholar 

  37. Bamford T, Barrie A, Montgomery S et al (2022) Morphological and morphokinetic associations with aneuploidy: a systematic review and meta-analysis. Hum Reprod Update 28:656–686. https://doi.org/10.1093/humupd/dmac022

    Article  PubMed  Google Scholar 

  38. Zhao H, Yuan P, Chen X et al (2022) The aneuploidy testing of blastocysts developing from 0PN and 1PN zygotes in conventional IVF through TE-biopsy PGT-A and minimally invasive PGT-A. Front Reprod Health 4:966909. https://doi.org/10.3389/frph.2022.966909

    Article  PubMed  PubMed Central  Google Scholar 

  39. Destouni A, Dimitriadou E, Masset H et al (2018) Genome-wide haplotyping embryos developing from 0PN and 1PN zygotes increases transferrable embryos in PGT-M. Hum Reprod 33:2302–2311. https://doi.org/10.1093/humrep/dey325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li M, Huang J, Zhuang X et al (2021) Obstetric and neonatal outcomes after the transfer of vitrified-warmed blastocysts developing from nonpronuclear and monopronuclear zygotes: a retrospective cohort study. Fertil Steril 115:110–117. https://doi.org/10.1016/j.fertnstert.2020.07.019

    Article  PubMed  Google Scholar 

  41. Chen C, Li W, Yin M et al (2022) Does the cell number of 0PN embryos on day 3 affect pregnancy and neonatal outcomes following single blastocyst transfer? BMC Pregnancy Childbirth 22:200. https://doi.org/10.1186/s12884-022-04492-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Castillo CM, Johnstone ED, Horne G et al (2020) Associations of IVF singleton birthweight and gestation with clinical treatment and laboratory factors: a multicentre cohort study. Hum Reprod 35:2860–2870. https://doi.org/10.1093/humrep/deaa244

    Article  PubMed  Google Scholar 

  43. Baran J, Weres A, Czenczek-Lewandowska E et al (2020) Excessive gestational weight gain: long-term consequences for the child. J Clin Med 9:3795. https://doi.org/10.3390/jcm9123795

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ezoe K, Coticchio G, Takenouchi H et al (2022) Spatiotemporal perturbations of pronuclear breakdown preceding syngamy affect early human embryo development: a retrospective observational study. J Assist Reprod Genet 39:75–84. https://doi.org/10.1007/s10815-021-02335-6

    Article  PubMed  Google Scholar 

  45. Suzuki R, Yao T, Okada M et al (2023) Direct cleavage during the first mitosis is a sign of abnormal fertilization in cattle. Theriogenology 200:96–105. https://doi.org/10.1016/j.theriogenology.2023.01.028

    Article  PubMed  Google Scholar 

  46. Uzun KN, Cıncık M, Selam B et al (2021) Comparison of the rates for reaching the blastocyst stage between normal and abnormal pronucleus embryos monitored by a time-lapse system in IVF patients. J Turk Ger Gynecol Assoc 22:120–126. https://doi.org/10.4274/jtgga.galenos.2020.2020.0033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yin B-L, Hao H-Y, Zhang Y-N et al (2016) Good quality blastocyst from non-/mono-pronuclear zygote may be used for transfer during IVF. Syst Biol Reprod Med 62:139–145. https://doi.org/10.3109/19396368.2015.1137993

    Article  PubMed  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

JZ and HY contributed to the study conception and design. Data collection and analysis were performed by all authors. The first draft of the manuscript was written by JZ and all authors commented on previous versions of the manuscript. HY was involved in finalizing the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Huiqun Yin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interests.

Ethical approval

This study was approved by the Ethics Committee of the 901st Hospital of the Joint Logistics Support Force of PLA.

Consent to participate

Written informed consent was obtained from all patients.

Consent for publish

All authors agree to transfer the copyright of the current study to the journal upon acceptance.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Wang, C., Cao, Z. et al. Developmental competence and neonatal outcomes of nonpronuclear zygotes following single vitrified-warmed blastocyst transfers using propensity score matching analysis. Arch Gynecol Obstet 309, 295–304 (2024). https://doi.org/10.1007/s00404-023-07235-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-023-07235-x

Keywords

Navigation