Skip to main content

Advertisement

Log in

Role of mineral nutrients other than iron in pregnancy: under recognized opportunities to improve maternal/fetal outcomes: a literature review

  • Review
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Background

Anemia during pregnancy is an important global health concern, affecting 40% of women worldwide, and iron deficiency shares a significant proportion of the burden. From conception to birth, pregnancy is a period when women undergo metabolic and physiological changes. The nutritional needs are higher during pregnancy; thus, adequate nutrition is essential to maintain fetal growth and development. However, adverse effects due to deficiency in nutrition during pregnancy can result in maternal, fetal and neonatal complications. Despite the multifactorial etiology of anemia, iron deficiency is assumed as the primary cause of anemia during pregnancy and hence, mitigation strategy pivots around it for anemia management. Therefore, excluding other contributors, a single-micronutrient approach with iron supplements remains a myopic approach and this can exacerbate iron deficiency anemia. Micronutrient deficiencies are of particular concern as they may pose a silent threat to the survival and well-being of reproductive-age women and their infants.

Aim

Micronutrients, especially trace minerals, play a myriad of roles in pregnancy, and the lack of each one causes adverse complications to both the mother and the fetus. In this review paper, we attempt to piece together available information regarding the adverse effects of abnormal trace mineral levels along with iron deficiency on the mother and the fetus.

Method

A non-systematic literature search in PubMed, Google Scholar, and the Cochrane databases, for publications on minerals and vitamins during pregnancy and the possible influence of supplements on pregnancy outcomes.

Conclusion

Micronutrient deficiency exacerbates the pregnancy-induced anemia and other adverse birth outcomes. Micronutrient supplementation during pregnancy can combat anemia as well as reduce a number of adverse pregnancy outcomes in a comprehensive manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

All the relevant data is available in this paper.

References

  1. Lee AI, Okam MM (2011) Anemia in pregnancy. Hematol/Oncol Clin 25(2):241–259

    Article  Google Scholar 

  2. Roy N, Pavord S (2018) The management of anaemia and haematinic deficiencies in pregnancy and post-partum. Transfus Med 28(2):107–116

    Article  CAS  PubMed  Google Scholar 

  3. Stevens GA, Finucane MM, De-Regil LM, Paciorek CJ, Flaxman SR, Branca F et al (2013) Global, regional, and national trends in haemoglobin concentration and prevalence of total and severe anaemia in children and pregnant and non-pregnant women for 1995–2011: a systematic analysis of population-representative data. Lancet Glob Health 1(1):e16–e25

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pavord S, Myers B, Robinson S, Allard S, Strong J, Oppenheimer C et al (2012) UK guidelines on the management of iron deficiency in pregnancy. Br J Haematol 156(5):588–600

    Article  CAS  PubMed  Google Scholar 

  5. Fisher AL, Nemeth E (2017) Iron homeostasis during pregnancy. Am J Clin Nutr 106:1567S-S1574

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sanghavi M, Rutherford JD (2014) Cardiovascular physiology of pregnancy. Circulation 130(12):1003–1008

    Article  PubMed  Google Scholar 

  7. Lowensohn RI, Stadler DD, Naze C (2016) Current concepts of maternal nutrition. Obstet Gynecol Surv 71(7):413

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mousa A, Naqash A, Lim S (2019) Macronutrient and micronutrient intake during pregnancy: an overview of recent evidence. Nutrients 11(2):443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Blencowe H, Krasevec J, De Onis M, Black RE, An X, Stevens GA et al (2019) National, regional, and worldwide estimates of low birthweight in 2015, with trends from 2000: a systematic analysis. Lancet Glob Health 7(7):e849–e860

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gernand AD, Schulze KJ, Stewart CP, West KP, Christian P (2016) Micronutrient deficiencies in pregnancy worldwide: health effects and prevention. Nat Rev Endocrinol 12(5):274–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fanzo J, Hawkes C, Udomkesmalee E, Afshin A, Allemandi L, Assery O, et al (2018) 2018 Global Nutrition Report: Shining a light to spur action on nutrition. 2018; Bristol, UK: Development Initiatives

  12. Keeley B, Little C, Zuehlke E. The State of the World's Children 2019: Children, Food and Nutrition--Growing Well in a Changing World. UNICEF. 2019.

  13. Black RE, Victora CG, Walker SP, Bhutta ZA, Christian P, De Onis M et al (2013) Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 382(9890):427–451

    Article  PubMed  Google Scholar 

  14. Berti C, Biesalski H, Gärtner R, Lapillonne A, Pietrzik K, Poston L et al (2011) Micronutrients in pregnancy: current knowledge and unresolved questions. Clin Nutr 30(6):689–701

    Article  CAS  PubMed  Google Scholar 

  15. Gambling L, Andersen HS, McArdle HJ (2008) Iron and copper, and their interactions during development. Biochem Soc Trans 36(6):1258–1261

    Article  CAS  PubMed  Google Scholar 

  16. Myint ZW, Oo TH, Thein KZ, Tun AM, Saeed H (2018) Copper deficiency anemia. Ann Hematol 97(9):1527–1534

    Article  CAS  PubMed  Google Scholar 

  17. Chambers A, Krewski D, Birkett N, Plunkett L, Hertzberg R, Danzeisen R et al (2010) An exposure-response curve for copper excess and deficiency. J Toxicol Environ Health, Part B 13(7–8):546–578

    Article  CAS  Google Scholar 

  18. Álvarez SI, Castañón SG, Ruata MLC, Aragüés EF, Terraz PB, Irazabal YG et al (2007) Updating of normal levels of copper, zinc and selenium in serum of pregnant women. J Trace Elem Med Biol 21:49–52

    Article  Google Scholar 

  19. Liu J, Yang H, Shi H, Shen C, Zhou W, Dai Q et al (2010) Blood copper, zinc, calcium, and magnesium levels during different duration of pregnancy in Chinese. Biol Trace Elem Res 135(1):31–37

    Article  CAS  PubMed  Google Scholar 

  20. McArdle H, Andersen H, Jones H, Gambling L (2008) Copper and iron transport across the placenta: regulation and interactions. J Neuroendocrinol 20(4):427–431

    Article  CAS  PubMed  Google Scholar 

  21. Paul S, Prashant A, Chaitra T, Suma M, Vishwanath P, Devaki R (2013) The micronutrient levels in the third trimester of pregnancy and assessment of the neonatal outcome: a pilot study. J Clin Diagn Res: JCDR 7(8):1572

    PubMed  PubMed Central  Google Scholar 

  22. Khayat S, Fanaei H, Ghanbarzehi A (2017) Minerals in pregnancy and lactation: a review article. J Clin Diagn Res: JCDR 11(9):QE01

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Özden TA, Gökçay G, Cantez MS, Durmaz Ö, İşsever H, Ömer B et al (2015) Copper, zinc and iron levels in infants and their mothers during the first year of life: a prospective study. BMC Pediatr 15(1):1–11

    Article  Google Scholar 

  24. Ugwuja EI, Nnabu RC, Ezeonu PO, Uro-Chukwu H (2015) The effect of parity on maternal body mass index, plasma mineral element status and new-born anthropometrics. Afr Health Sci 15(3):986–992

    Article  PubMed  PubMed Central  Google Scholar 

  25. Rossipal E, Krachler M, Li F, Micetic-Turk D (2000) Investigation of the transport of trace elements across barriers in humans: studies of placental and mammary transfer. Acta Paediatr 89(10):1190–1195

    Article  CAS  PubMed  Google Scholar 

  26. Özdemir Y, Börekci B, Levet A, Kurudirek M (2009) Assessment of trace element concentration distribution in human placenta by wavelength dispersive X-ray fluorescence: effect of neonate weight and maternal age. Appl Radiat Isot 67(10):1790–1795

    Article  PubMed  Google Scholar 

  27. Bermúdez L, García-Vicent C, López J, Torró MI, Lurbe E (2015) Assessment of ten trace elements in umbilical cord blood and maternal blood: association with birth weight. J Transl Med 13(1):1–8

    Article  Google Scholar 

  28. Kolusari A, Kurdoglu M, Yildizhan R, Adali E, Edirne T, Cebi A et al (2008) Catalase activity, serum trace element and heavy metal concentrations, and vitamin A, D and E levels in pre-eclampsia. J Int Med Res 36(6):1335–1341

    Article  CAS  PubMed  Google Scholar 

  29. Serdar Z, Gür E, Develioğlu O (2006) Serum iron and copper status and oxidative stress in severe and mild preeclampsia. Cell Biochem Funct 24(3):209–215

    Article  CAS  PubMed  Google Scholar 

  30. Lewandowska M, Sajdak S, Marciniak W, Lubiński J (2019) First trimester serum copper or zinc levels, and risk of pregnancy-induced hypertension. Nutrients 11(10):2479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hao Y, Pang Y, Yan H, Zhang Y, Liu J, Jin L et al (2019) Association of maternal serum copper during early pregnancy with the risk of spontaneous preterm birth: a nested case-control study in China. Environ Int 122:237–243

    Article  CAS  PubMed  Google Scholar 

  32. Keats EC, Haider BA, Tam E, Bhutta ZA (2019) Multiple-micronutrient supplementation for women during pregnancy. Cochrane Database of Syst Rev. https://doi.org/10.1002/14651858.CD004905.pub6

    Article  Google Scholar 

  33. Oh C, Keats EC, Bhutta ZA (2020) Vitamin and mineral supplementation during pregnancy on maternal, birth, child health and development outcomes in low-and middle-income countries: a systematic review and meta-analysis. Nutrients 12(2):491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Arredondo M, Núñez MT (2005) Iron and copper metabolism. Mol Aspects Med 26(4–5):313–327

    Article  CAS  PubMed  Google Scholar 

  35. Maret W, Sandstead HH (2006) Zinc requirements and the risks and benefits of zinc supplementation. J Trace Elem Med Biol 20(1):3–18

    Article  CAS  PubMed  Google Scholar 

  36. Unicef B (2013) National micronutrients status survey. Inst Public Health Nutr 16:2018

    Google Scholar 

  37. Copper UE (1977) (In) Trace Elements in Human and Animal Nutrition 4th Edition, 57–100. Academic Press, New York

    Google Scholar 

  38. Murakami M, Hirano T (2008) Intracellular zinc homeostasis and zinc signaling. Cancer Sci 99(8):1515–1522

    Article  CAS  PubMed  Google Scholar 

  39. Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF et al (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388(6641):482–488

    Article  CAS  PubMed  ADS  Google Scholar 

  40. Rouault TA (2006) The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nat Chem Biol 2(8):406–414

    Article  CAS  PubMed  Google Scholar 

  41. Balesaria S, Ramesh B, McArdle H, Bayele HK, Srai SK (2010) Divalent metal-dependent regulation of hepcidin expression by MTF-1. FEBS Lett 584(4):719–725

    Article  CAS  PubMed  Google Scholar 

  42. Graham RD, Knez M, Welch RM (2012) How much nutritional iron deficiency in humans globally is due to an underlying zinc deficiency? Adv Agron 115:1–40

    Article  CAS  Google Scholar 

  43. Olivares M, Pizarro F, Ruz M (2007) New insights about iron bioavailability inhibition by zinc. Nutrition 23(4):292–295

    Article  CAS  PubMed  Google Scholar 

  44. Nishiyama S, Kiwaki K, Miyazaki Y, Hasuda T (1999) Zinc and IGF-I concentrations in pregnant women with anemia before and after supplementation with iron and/or zinc. J Am Coll Nutr 18(3):261–267

    Article  CAS  PubMed  Google Scholar 

  45. O’Brien KO, Zavaleta N, Caulfield LE, Yang D-X, Abrams SA (1999) Influence of prenatal iron and zinc supplements on supplemental iron absorption, red blood cell iron incorporation, and iron status in pregnant Peruvian women. Am J Clin Nutr 69(3):509–515

    CAS  PubMed  Google Scholar 

  46. O’Brien KO, Zavaleta N, Caulfield LE, Wen J, Abrams SA (2000) Prenatal iron supplements impair zinc absorption in pregnant Peruvian women. J Nutr 130(9):2251–2255

    Article  CAS  PubMed  Google Scholar 

  47. Goldenberg RL, Tamura T, Neggers Y, Copper RL, Johnston KE, DuBard MB et al (1995) The effect of zinc supplementation on pregnancy outcome. JAMA 274(6):463–468

    Article  CAS  PubMed  Google Scholar 

  48. Chaffee BW, King JC (2012) Effect of zinc supplementation on pregnancy and infant outcomes: a systematic review. Paediatr Perinat Epidemiol 26:118–137

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ota E, Mori R, Middleton P, Tobe-Gai R, Mahomed K, Miyazaki C et al (2015) Zinc supplementation for improving pregnancy and infant outcome. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD000230.pub5

    Article  PubMed  PubMed Central  Google Scholar 

  50. Alemu B, Gashu D (2020) Association of maternal anthropometry, hemoglobin and serum zinc concentration during pregnancy with birth weight. Early Human Dev 142:104949

    Article  CAS  Google Scholar 

  51. Hess SY, King JC (2009) Effects of maternal zinc supplementation on pregnancy and lactation outcomes. Food Nutr Bull 30:S60–S78

    Article  PubMed  Google Scholar 

  52. Tamura T, Goldenberg RL, Johnston KE, DuBard M (2000) Maternal plasma zinc concentrations and pregnancy outcome. Am J Clin Nutr 71(1):109–113

    Article  CAS  PubMed  Google Scholar 

  53. Mistry HD, Kurlak LO, Young SD, Briley AL, Broughton Pipkin F, Baker PN et al (2014) Maternal selenium, copper and zinc concentrations in pregnancy associated with small-for-gestational-age infants. Matern Child Nutr 10(3):327–334

    Article  PubMed  Google Scholar 

  54. Wang H, Hu Y-F, Hao J-H, Chen Y-H, Su P-Y, Wang Y et al (2015) Maternal zinc deficiency during pregnancy elevates the risks of fetal growth restriction: a population-based birth cohort study. Sci Rep 5(1):1–10

    Google Scholar 

  55. Rwebembera AA-B, Munubhi E, Manji K, Mpembeni R, Philip J (2005) Relationship between infant birth weight≤ g and maternal zinc levels at Muhimbili National Hospital, Dar Es Salaam, Tanzania. J Trop Pediatr 52(2):118–125

    Article  PubMed  Google Scholar 

  56. Kocyłowski R, Lewicka I, Grzesiak M, Gaj Z, Sobańska A, Poznaniak J et al (2018) Assessment of dietary intake and mineral status in pregnant women. Arch Gynecol Obstet 297(6):1433–1440

    Article  PubMed  PubMed Central  Google Scholar 

  57. Knez M, Graham RD, Welch RM, Stangoulis JC (2017) New perspectives on the regulation of iron absorption via cellular zinc concentrations in humans. Crit Rev Food Sci Nutr 57(10):2128–2143

    Article  CAS  PubMed  Google Scholar 

  58. Bjørklund G, Aaseth J, Skalny AV, Suliburska J, Skalnaya MG, Nikonorov AA et al (2017) Interactions of iron with manganese, zinc, chromium, and selenium as related to prophylaxis and treatment of iron deficiency. J Trace Elem Med Biol 41:41–53

    Article  PubMed  Google Scholar 

  59. Nossier SA, Naeim NE, El-Sayed NA, Zeid AAA (2015) The effect of zinc supplementation on pregnancy outcomes: a double-blind, randomised controlled trial. Egypt Br J Nutr 114(2):274–285

    Article  CAS  PubMed  Google Scholar 

  60. Prawirohartono EP, Nyström L, Nurdiati DS, Hakimi M, Lind T (2013) The impact of prenatal vitamin A and zinc supplementation on birth size and neonatal survival: A double-blind, randomized controlled trial in a rural area of Indonesia. Int J Vitam Nutr Res 83(1):14–25

    Article  CAS  PubMed  Google Scholar 

  61. Costa LG, Aschner M (2014) Manganese in health and disease. Royal Society of Chemistry, London

    Book  Google Scholar 

  62. Garrick MD, Dolan KG (2002) An expression system for a transporter of iron and other metals. Oxidants and Antioxidants. Human Press, New Jersey, pp 147–154

    Chapter  Google Scholar 

  63. Garrick MD, Singleton ST, Vargas F, Kuo H, Zhao L, Knöpfel M et al (2006) DMT1: which metals does it transport? Biol Res 39(1):79–85

    Article  CAS  PubMed  Google Scholar 

  64. Pantopoulos K (2004) Iron metabolism and the IRE/IRP regulatory system: an update. Ann N Y Acad Sci 1012(1):1–13

    Article  CAS  PubMed  ADS  Google Scholar 

  65. Roth JA, Garrick MD (2003) Iron interactions and other biological reactions mediating the physiological and toxic actions of manganese. Biochem Pharmacol 66(1):1–13

    Article  CAS  PubMed  Google Scholar 

  66. Henn BC, Ettinger AS, Schwartz J, Téllez-Rojo MM, Lamadrid-Figueroa H, Hernández-Avila M et al (2010) Early postnatal blood manganese levels and children’s neurodevelopment. Epidemiology 21(4):433

    Article  PubMed Central  Google Scholar 

  67. Krachler M, Rossipal E, Micetic-Turk D (1999) Trace element transfer from the mother to the newborn—investigations on triplets of colostrum, maternal and umbilical cord sera. Eur J Clin Nutr 53(6):486–494

    Article  CAS  PubMed  Google Scholar 

  68. Bartnikas TB (2012) Known and potential roles of transferrin in iron biology. Biometals 25(4):677–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Erikson KM, Syversen T, Aschner JL, Aschner M (2005) Interactions between excessive manganese exposures and dietary iron-deficiency in neurodegeneration. Environ Toxicol Pharmacol 19(3):415–421

    Article  CAS  PubMed  Google Scholar 

  70. Chen L, Ding G, Gao Y, Wang P, Shi R, Huang H et al (2014) Manganese concentrations in maternal–infant blood and birth weight. Environ Sci Pollut Res 21(9):6170–6175

    Article  CAS  Google Scholar 

  71. Oulhote Y, Mergler D, Bouchard MF (2014) Sex-and age-differences in blood manganese levels in the US general population: national health and nutrition examination survey 2011–2012. Environ Health 13(1):1–10

    Article  Google Scholar 

  72. Gong L, Yang Q, Liu C-W-B, Wang X, Zeng H-L (2021) Assessment of 12 essential and toxic elements in whole blood of pregnant and non-pregnant women living in Wuhan of China. Biol Trace Element Res 199(6):2121–2130

    Article  CAS  Google Scholar 

  73. Ashrap P, Watkins DJ, Mukherjee B, Boss J, Richards MJ, Rosario Z et al (2020) Predictors of urinary and blood Metal (loid) concentrations among pregnant women in Northern Puerto Rico. Environ Res 183:109178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Guy M, Accrombessi M, Fievet N, Yovo E, Massougbodji A, Le Bot B et al (2018) Toxics (Pb, Cd) and trace elements (Zn, Cu, Mn) in women during pregnancy and at delivery, South Benin, 2014–2015. Environ Res 167:198–206

    Article  CAS  PubMed  Google Scholar 

  75. Takser L, Lafond J, Bouchard M, St-Amour G, Mergler D (2004) Manganese levels during pregnancy and at birth: relation to environmental factors and smoking in a Southwest Quebec population. Environ Res 95(2):119–125

    Article  CAS  PubMed  Google Scholar 

  76. Skalnaya MG, Tinkov AA, Lobanova YN, Chang J-S, Skalny AV (2019) Serum levels of copper, iron, and manganese in women with pregnancy, miscarriage, and primary infertility. J Trace Elem Med Biol 56:124–130

    Article  CAS  PubMed  Google Scholar 

  77. Sarwar M, Ahmed S, Ullah M, Kabir H, Rahman G, Hasnat A et al (2013) Comparative study of serum zinc, copper, manganese, and iron in preeclamptic pregnant women. Biol Trace Elem Res 154(1):14–20

    Article  CAS  PubMed  Google Scholar 

  78. Vigeh M, Yokoyama K, Ramezanzadeh F, Dahaghin M, Fakhriazad E, Seyedaghamiri Z et al (2008) Blood manganese concentrations and intrauterine growth restriction. Reprod Toxicol 25(2):219–223

    Article  CAS  PubMed  Google Scholar 

  79. Yu X, Cao L, Yu X (2013) Elevated cord serum manganese level is associated with a neonatal high ponderal index. Environ Res 121:79–83

    Article  CAS  PubMed  Google Scholar 

  80. Zota AR, Ettinger AS, Bouchard M, Amarasiriwardena CJ, Schwartz J, Hu H et al (2009) Maternal blood manganese levels and infant birth weight. Epidemiology 20(3):367

    Article  PubMed  PubMed Central  Google Scholar 

  81. Eum J-H, Cheong H-K, Ha E-H, Ha M, Kim Y, Hong Y-C et al (2014) Maternal blood manganese level and birth weight: a MOCEH birth cohort study. Environ Health 13(1):1–7

    Article  Google Scholar 

  82. Zoroddu MA, Aaseth J, Crisponi G, Medici S, Peana M, Nurchi VM (2019) The essential metals for humans: a brief overview. J Inorg Biochem 195:120–129

    Article  CAS  PubMed  Google Scholar 

  83. De Baaij JH, Hoenderop JG, Bindels RJ (2015) Magnesium in man: implications for health and disease. Physiol Rev 95:1–46

    Article  PubMed  Google Scholar 

  84. Hovdenak N, Haram K (2012) Influence of mineral and vitamin supplements on pregnancy outcome. Eur J Obstet Gynecol Reprod Biol 164(2):127–132

    Article  CAS  PubMed  Google Scholar 

  85. Zarean E, Tarjan A (2017) Effect of magnesium supplement on pregnancy outcomes: a randomized control trial. Adv Biomed Res 6(1):109

    Article  PubMed  PubMed Central  Google Scholar 

  86. Shi Z, Hu X, He K, Yuan B, Garg M (2008) Joint association of magnesium and iron intake with anemia among Chinese adults. Nutrition 24(10):977–984

    Article  CAS  PubMed  Google Scholar 

  87. Cinar V, Nizamlioglu M, Mogulkoc R, Baltaci AK (2007) Effects of magnesium supplementation on blood parameters of athletes at rest and after exercise. Biol Trace Elem Res 115(3):205–212

    Article  CAS  PubMed  Google Scholar 

  88. Zhan Y, Chen R, Zheng W, Guo C, Lu L, Ji X et al (2014) Association between serum magnesium and anemia: China health and nutrition survey. Biol Trace Elem Res 159(1):39–45

    Article  CAS  PubMed  Google Scholar 

  89. ACOG Committee on Obstetric Practice, & Society for Maternal-Fetal Medicine (2013) Committee opinion No. 573: magnesium sulfate use in obstetrics. Obstet Gynecol 122:727–728

  90. Dalton LM, Ní Fhloinn DM, Gaydadzhieva GT, Mazurkiewicz OM, Leeson H, Wright CP (2016) Magnesium in pregnancy. Nutr Rev 74(9):549–557

    Article  PubMed  Google Scholar 

  91. Barbosa NO, Okay TS, Leone CR (2005) Magnesium and intrauterine growth restriction. J Am Coll Nutr 24(1):10–15

    Article  CAS  PubMed  Google Scholar 

  92. Takaya J, Yamato F, Kaneko K (2006) Possible relationship between low birth weight and magnesium status: from the standpoint of “fetal origin” hypothesis. Magnes Res 19(1):63–69

    CAS  PubMed  Google Scholar 

  93. Shankar H, Kumar N, Sandhir R, Singh MP, Mittal S, Adhikari T et al (2019) Association of dietary intake below recommendations and micronutrient deficiencies during pregnancy and low birthweight. J Perinat Med 47(7):724–731

    Article  CAS  PubMed  Google Scholar 

  94. Djagbletey R, Owusu Darkwa E, deGraft-Johnson P, Sottie D, Essuman R, Aryee G et al (2018) Serum Calcium and Magnesium Levels in Normal Ghanaian Pregnant Women: A Comparative Cross-Sectional Study. Open Access Maced J Med Sci. 6(11):2006–2011

    Article  PubMed  PubMed Central  Google Scholar 

  95. Kanagal DV, Rajesh A, Rao K, Devi UH, Shetty H, Kumari S et al (2014) Levels of serum calcium and magnesium in pre-eclamptic and normal pregnancy: a study from Coastal India. J Clin Diagn Res: JCDR 8(7):OC01

    PubMed  PubMed Central  Google Scholar 

  96. Buppasiri P, Lumbiganon P, Thinkhamrop J, Ngamjarus C, Laopaiboon M, Medley N (2015) Calcium supplementation (other than for preventing or treating hypertension) for improving pregnancy and infant outcomes. Cochrane Database of Syst Rev. https://doi.org/10.1002/14651858.CD007079.pub3

    Article  Google Scholar 

  97. McMaster KM, Kaunitz AM, Burbano de Lara P, Sanchez-Ramos L (2017) A systematic review and meta-analysis of hypocalciuria in pre-eclampsia. Int J Gynecol Obstet 138(1):3–11

    Article  CAS  Google Scholar 

  98. Mosha D, Liu E, Hertzmark E, Chan G, Sudfeld C, Masanja H et al (2017) Dietary iron and calcium intakes during pregnancy are associated with lower risk of prematurity, stillbirth and neonatal mortality among women in Tanzania. Public Health Nutr 20(4):678–686

    Article  PubMed  Google Scholar 

  99. Williamson C (2006) Nutrition in pregnancy. Nutr Bull 31(1):28–59

    Article  Google Scholar 

  100. Hofmeyr GJ, Lawrie TA, Atallah ÁN, Torloni MR (2018) Calcium supplementation during pregnancy for preventing hypertensive disorders and related problems. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD001059.pub5

    Article  PubMed  PubMed Central  Google Scholar 

  101. World Health Organization (2013) Guideline: Calcium supplementation in pregnant women. World Health Organization

  102. Naylor K, Iqbal P, Fledelius C, Fraser R, Eastell R (2000) The effect of pregnancy on bone density and bone turnover. J Bone Miner Res 15(1):129–137

    Article  CAS  PubMed  Google Scholar 

  103. Norman J, Politz D, Politz L (2009) Hyperparathyroidism during pregnancy and the effect of rising calcium on pregnancy loss: a call for earlier intervention. Clin Endocrinol 71(1):104–109

    Article  CAS  Google Scholar 

  104. Bhutta ZA, Das JK, Rizvi A, Gaffey MF, Walker N, Horton S et al (2013) Evidence-based interventions for improvement of maternal and child nutrition: what can be done and at what cost? The lancet 382(9890):452–477

    Article  Google Scholar 

  105. Zhukovskaya E, Karelin A, Rumyantsev A (2019) Neurocognitive dysfunctions in iron deficiency patients. IntechOpen, London, UK

    Book  Google Scholar 

  106. Standley CA, Whitty JE, Mason BA, Cotton DB (1997) Serum ionized magnesium levels in normal and preeclamptic gestation. Obstet Gynecol 89(1):24–27

    Article  CAS  PubMed  Google Scholar 

  107. Hanna B (2009) The role of calcium correction during normal pregnancy at third trimester in Mosul. Oman Med J 24(3):188

    PubMed  PubMed Central  Google Scholar 

  108. Sultana M, Begum R, Akhter Q, Lovely N, Akhter S, Islam M (2012) Serum calcium and phosphate level in normal pregnant women. Bangladesh J Med Sci 11(3):217–220

    Article  Google Scholar 

  109. National Health and Medical Research Council, Australian Government Department of Health and Ageing, New Zealand Ministry of Health. Nutrient Reference Values for Australia and New Zealand. Canberra: National Health and Medical Research Council (2006)

  110. Rayman MP (2008) Food-chain selenium and human health: emphasis on intake. Br J Nutr 100(2):254–268

    Article  CAS  PubMed  Google Scholar 

  111. Ross AC, Caballero BH, Cousins RJ, Tucker KL, Ziegler TR (2012) Modern nutrition in health and disease. Wolters Kluwer Health Adis (ESP), Norway

    Google Scholar 

  112. Mistry HD, Williams PJ (2011) The importance of antioxidant micronutrients in pregnancy. Oxid Med Cell Longev 2011:1–12

    Article  Google Scholar 

  113. Rayman MP (2000) The importance of selenium to human health. The lancet 356(9225):233–241

    Article  CAS  Google Scholar 

  114. Koçak İ, Aksoy E, Cp Ü (1999) Recurrent spontaneous abortion and selenium deficiency. Int J Gynecol Obstet 1(65):79–80

    Article  Google Scholar 

  115. Maleki A, Fard MK, Zadeh DH, Mamegani MA, Abasaizadeh S, Mazloomzadeh S (2011) The relationship between plasma level of Se and preeclampsia. Hypertens Pregnancy 30(2):180–187

    Article  CAS  PubMed  Google Scholar 

  116. Mistry HD, Wilson V, Ramsay MM, Symonds ME, Pipkin FB (2008) Reduced selenium concentrations and glutathione peroxidase activity in preeclamptic pregnancies. Hypertension 52(5):881–888

    Article  CAS  PubMed  Google Scholar 

  117. Rayman MP (2016) Is adequate selenium important for healthy human pregnancy? Springer, Selenium, pp 353–364

    Google Scholar 

  118. Negro R, Attanasio R, Grimaldi F, Marcocci C, Guglielmi R, Papini E (2016) A 2016 Italian survey about the clinical use of selenium in thyroid disease. Eur Thyroid J 5(3):164–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Davies S, Briand V, Accrombessi M, Fievet N, Le Bot B, Durand S et al (2021) Pre-conception serum ferritin concentrations are associated with metal concentrations in blood during pregnancy: A cohort study in Benin. Environ Res 202:111629

    Article  CAS  PubMed  Google Scholar 

  120. Caspersen IH, Thomsen C, Haug LS, Knutsen HK, Brantsæter AL, Papadopoulou E et al (2019) Patterns and dietary determinants of essential and toxic elements in blood measured in mid-pregnancy: The Norwegian Environmental Biobank. Sci Total Environ 671:299–308

    Article  CAS  PubMed  ADS  Google Scholar 

  121. Amorós R, Murcia M, Ballester F, Broberg K, Iñiguez C, Rebagliato M et al (2018) Selenium status during pregnancy: Influential factors and effects on neuropsychological development among Spanish infants. Sci Total Environ 610:741–749

    Article  PubMed  ADS  Google Scholar 

  122. Jiang S, Yang B, Xu J, Liu Z, Yan C, Zhang J et al (2019) Associations of internal-migration status with maternal exposure to stress, lead, and selenium deficiency among pregnant women in Shanghai. China Biol Trace Elem Res 190(2):309–317

    Article  CAS  PubMed  Google Scholar 

  123. Nogales F, Ojeda ML, Del Valle PM, Serrano A, Murillo ML, Carreras SO (2017) Metabolic syndrome and selenium during gestation and lactation. Eur J Nutr 56(2):819–830

    Article  CAS  PubMed  Google Scholar 

  124. Khoushabi F, Shadan MR, Miri A, Sharifi-Rad J (2016) Determination of maternal serum zinc, iron, calcium and magnesium during pregnancy in pregnant women and umbilical cord blood and their association with outcome of pregnancy. Materia Socio-Medica 28(2):104

    Article  PubMed  PubMed Central  Google Scholar 

  125. Kocyłowski R, Lewicka I, Grzesiak M, Gaj Z, Oszukowski P, von Kaisenberg C et al (2018) Evaluation of mineral concentrations in maternal serum before and after birth and in newborn cord blood postpartum—preliminary study. Biol Trace Elem Res 182(2):217–223

    Article  PubMed  Google Scholar 

  126. Tabrizi FM, Pakdel FG (2014) Serum level of some minerals during three trimesters of pregnancy in Iranian women and their newborns: a longitudinal study. Indian J Clin Biochem 29(2):174–180

    Article  CAS  PubMed  Google Scholar 

  127. Jariwala M, Suvarna S, Kiran Kumar G, Amin A, Udas A (2014) Study of the concentration of trace elements Fe, Zn, Cu, Se and their correlation in maternal serum, cord serum and colostrums. Indian J Clin Biochem 29(2):181–188

    Article  CAS  PubMed  Google Scholar 

  128. Mistry HD, Pipkin FB, Redman CW, Poston L (2012) Selenium in reproductive health. Am J Obstet Gynecol 206(1):21–30

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge Indian Council of Medical Research, India for infrastructure like internet facility and access to the journals website.

Funding

This study and all authors have received no funding.

Author information

Authors and Affiliations

Authors

Contributions

GKT and HS have made equal contribution to study and publication: GKT and HS wrote the paper: TA and BK read and approved the final manuscript.

Corresponding authors

Correspondence to Hari Shankar or Taruna K. Arora.

Ethics declarations

Conflict of interest

All authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, G.k., Shankar, H., Arora, T.K. et al. Role of mineral nutrients other than iron in pregnancy: under recognized opportunities to improve maternal/fetal outcomes: a literature review. Arch Gynecol Obstet 309, 895–905 (2024). https://doi.org/10.1007/s00404-023-07183-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-023-07183-6

Keywords

Navigation