Skip to main content
Log in

The number of prior pregnancy losses does not impact euploidy rates in young patients with idiopathic recurrent pregnancy loss

  • Gynecologic Endocrinology and Reproductive Medicine
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

Our study aimed to determine the possible factors that might impact the probability of obtaining a euploid blastocyst following intracytoplasmic sperm injection (ICSI) and preimplantation genetic testing for aneuploidy (PGT-A) procedures in idiopathic recurrent pregnancy loss (RPL) patients.

Methods

This single-center retrospective cohort analysis included 180 oocyte retrieval cycles of 166 women under 35 years old and those diagnosed with idiopathic RPL according to American Society of Reproductive Medicine (ASRM) guidelines. Trophectoderm biopsy and next-generation sequencing (NGS) were the techniques used. Patients were stratified by the number of previous losses (Group A: 2, Group B: 3, and Group C: > 3).

Results

Baseline and embryological characteristics showed no statistically significant differences. The euploidy rate per analyzed blastocyst was comparable within the groups (63.3%, 58.2%, and 58.5%; p = 0.477). Logistic regression analyses confirmed that only the trophectoderm scores of A and B increased the probability of obtaining a euploid embryo [OR: 1.82, 95% CI (1.120–2.956), p: 0.016].

Conclusion

It is concluded that there was no correlation between the number of previous losses and the chance of finding at least one euploid embryo in ICSI cycles of women younger than 35 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

https://doi.org/10.6084/m9.figshare.22121888.

Abbreviations

AH:

Assisted hatching

Array-CGH:

Array-based comparative genomic hybridization

ASRM:

American Society of Reproductive Medicine

BMI:

Body mass index

E2 :

Estradiol

GLMM:

Generalized linear mixed model

hCG:

Human chorionic gonadotropin

ICSI:

Intracytoplasmic sperm injection

ICM:

Inner cell mass

NGS:

Next-generation sequencing

P4 :

Progesterone

PGT-A:

Preimplantation genetic testing for aneuploidy

POCs:

Products of conception

RPL:

Recurrent pregnancy loss

SART-CORS:

Society for assisted reproductive technology clinical outcomes reporting system

SNP:

Single nucleotide polymorphism

TV-USG:

Transvaginal ultrasound

References

  1. Practice Committee of the American Society for Reproductive Medicine (2020) Definitions of infertility and recurrent pregnancy loss: a committee opinion. Fertil Steril 113(3):533–535. https://doi.org/10.1016/j.fertnstert.2019.11.025

    Article  Google Scholar 

  2. Jaslow CR, Kutteh WH (2013) Effect of prior birth and miscarriage frequency on the prevalence of acquired and congenital uterine anomalies in women with recurrent miscarriage: a cross-sectional study. Fertil Steril 99(7):1916–1922. https://doi.org/10.1016/j.fertnstert.2013.01.152

    Article  PubMed  Google Scholar 

  3. Practice Committee of the American Society for Reproductive Medicine (2012) Evaluation and treatment of recurrent pregnancy loss: a committee opinion. Fertil Steril 98(5):1103–1111. https://doi.org/10.1016/j.fertnstert.2012.06.048

    Article  Google Scholar 

  4. Hassold TJ (1980) A cytogenetic study of repeated spontaneous abortions. Am J Hum Genet 32(5):723–730

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Drugan A, Koppitch FC 3rd, Williams JC 3rd, Johnson MP, Moghissi KS, Evans MI (1990) Prenatal genetic diagnosis following recurrent early pregnancy loss. Obstet Gynecol 75(3 Pt 1):381–384

    CAS  PubMed  Google Scholar 

  6. Stern JJ, Dorfmann AD, Gutierrez-Najar AJ, Cerrillo M, Coulam CB (1996) Frequency of abnormal karyotypes among abortuses from women with and without a history of recurrent spontaneous abortion. Fertil Steril 65(2):250–253. https://doi.org/10.1016/s0015-0282(16)58079-0

    Article  CAS  PubMed  Google Scholar 

  7. Daniely M, Aviram-Goldring A, Barkai G, Goldman B (1998) Detection of chromosomal aberration in fetuses arising from recurrent spontaneous abortion by comparative genomic hybridization. Hum Reprod 13(4):805–809. https://doi.org/10.1093/humrep/13.4.805

    Article  CAS  PubMed  Google Scholar 

  8. Nikitina TV, Sazhenova EA, Zhigalina DI, Tolmacheva EN, Sukhanova NN, Lebedev IN (2020) Karyotype evaluation of repeated abortions in primary and secondary recurrent pregnancy loss. J Assist Reprod Genet 37(3):517–525. https://doi.org/10.1007/s10815-020-01703-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. McCoy RC, Demko Z, Ryan A, Banjevic M, Hill M, Sigurjonsson S, Rabinowitz M, Fraser HB, Petrov DA (2015) Common variants spanning PLK4 are associated with mitotic-origin aneuploidy in human embryos. Hum Genet 348(6231):235–238. https://doi.org/10.1126/science.aaa3337

    Article  CAS  Google Scholar 

  10. Stephenson MD, Awartani KA, Robinson WP (2002) Cytogenetic analysis of miscarriages from couples with recurrent miscarriage: a case-control study. Hum Reprod 17(2):446–451. https://doi.org/10.1093/humrep/17.2.446

    Article  CAS  PubMed  Google Scholar 

  11. Sullivan AE, Silver RM, LaCoursiere DY, Porter TF, Branch DW (2004) Recurrent fetal aneuploidy and recurrent miscarriage. Obstet Gynecol 104(4):784–788. https://doi.org/10.1097/01.AOG.0000137832.86727.e2

    Article  PubMed  Google Scholar 

  12. Wang Y, Cheng Q, Meng L, Luo C, Hu H, Zhang J, Cheng J, Xu T, Jiang T, Liang D et al (2017) Clinical application of SNP array analysis in first-trimester pregnancy loss: a prospective study. Clin Genet 91(6):849–858. https://doi.org/10.1111/cge.12926

    Article  CAS  PubMed  Google Scholar 

  13. Smits MAJ, van Maarle M, Hamer G, Mastenbroek S, Goddijn M, van Wely M (2020) Cytogenetic testing of pregnancy loss tissue: a meta-analysis. Reprod Biomed Online 40(6):867–879. https://doi.org/10.1016/j.rbmo.2020.02.001

    Article  CAS  PubMed  Google Scholar 

  14. Lee HL, McCulloh DH, Hodes-Wertz B, Adler A, McCaffrey C, Grifo JA (2015) In vitro fertilization with preimplantation genetic screening improves implantation and live birth in women age 40 through 43. J Assist Reprod Genet 32(3):435–444. https://doi.org/10.1007/s10815-014-0417-7

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chang J, Boulet SL, Jeng G, Flowers L, Kissin DM (2016) Outcomes of in vitro fertilization with preimplantation genetic diagnosis: an analysis of the United states assisted reproductive technology surveillance data, 2011–2012. Fertil Steril 105(2):394–400. https://doi.org/10.1016/j.fertnstert.2015.10.018

    Article  PubMed  Google Scholar 

  16. Bhatt SJ, Marchetto NM, Roy J, Morelli SS, McGovern PG (2021) Pregnancy outcomes following in vitro fertilization frozen embryo transfer (IVF-FET) with or without preimplantation genetic testing for aneuploidy (PGT-A) in women with recurrent pregnancy loss (RPL): a SART-CORS study. Hum Reprod 36(8):2339–2344. https://doi.org/10.1093/humrep/deab117

    Article  CAS  PubMed  Google Scholar 

  17. Chan C, Ryu M, Zwingerman R (2020) Preimplantation genetic testing for aneuploidy: A Canadian Fertility and Andrology Society Guideline. Reprod Biomed Online 42(1):105–116. https://doi.org/10.1016/j.rbmo.2020.10.020

    Article  CAS  PubMed  Google Scholar 

  18. Dahdouh EM (2021) Preimplantation genetic testing for aneuploidy: a review of the evidence. Obstet Gynecol 137(3):528–534. https://doi.org/10.1097/AOG.0000000000004295

    Article  PubMed  Google Scholar 

  19. Serdarogullari M, Coban O, Boynukalin FK, Bilgin EM, Findikli N, Bahceci M (2019) Successful application of a single warming protocol for embryos cryopreserved by either slow freezing or vitrification techniques. Syst Biol Reprod Med 65(1):12–19. https://doi.org/10.1080/19396368.2018.1487477

    Article  CAS  PubMed  Google Scholar 

  20. Gardner DK, Schoolcraft WB (1999) Culture and transfer of human blastocysts. Curr Opin Obstet Gynecol 11(3):307–311. https://doi.org/10.1097/00001703-199906000-00013

    Article  CAS  PubMed  Google Scholar 

  21. Zhao H, Tao W, Li M, Liu H, Wu K, Ma S (2019) Comparison of two protocols of blastocyst biopsy submitted to preimplantation genetic testing for aneuploidies: a randomized controlled trial. Arch Gynecol Obstet 299(5):1487–1493. https://doi.org/10.1007/s00404-019-05084-1

    Article  PubMed  Google Scholar 

  22. Wells D, Kaur K, Grifo J, Glassner M, Taylor JC, Fragouli E, Munne S (2014) Clinical utilization of a rapid low-pass whole genome sequencing technique for the diagnosis of aneuploidy in human embryos prior to implantation. J Med Genet 51(8):553–562. https://doi.org/10.1136/jmedgenet-2014-102497

    Article  CAS  PubMed  Google Scholar 

  23. Kung A, Munné S, Bankowski B, Coates A, Wells D (2015) Validation of next-generation sequencing for comprehensive chromosome screening of embryos. Reprod Biomed Online 31(6):760–769. https://doi.org/10.1016/j.rbmo.2015.09.002

    Article  CAS  PubMed  Google Scholar 

  24. Simón C, Rubio C, Vidal F, Gimenez C, Moreno C, Parrilla JJ, Pellicer A (1998) Increased chromosome abnormalities in human preimplantation embryos after in-vitro fertilization in patients with recurrent miscarriage. Reprod Fertil Dev 10(1):87–92. https://doi.org/10.1071/r98030

    Article  PubMed  Google Scholar 

  25. Pellicer A, Rubio C, Vidal F, Mínguez Y, Giménez C, Egozcue J, Remohí J, Simón C (1999) In vitro fertilization plus preimplantation genetic diagnosis in patients with recurrent miscarriage: an analysis of chromosome abnormalities in human preimplantation embryos. Fertil Steril 71(6):1033–1039. https://doi.org/10.1016/s0015-0282(99)00143-0

    Article  CAS  PubMed  Google Scholar 

  26. Rubio C, Simón C, Vidal F, Rodrigo L, Pehlivan T, Remohí J, Pellicer A (2003) Chromosomal abnormalities and embryo development in recurrent miscarriage couples. Hum Reprod 18(1):182–188. https://doi.org/10.1093/humrep/deg015

    Article  CAS  PubMed  Google Scholar 

  27. Platteau P, Staessen C, Michiels A, Van Steirteghem A, Liebaers I, Devroey P (2005) Preimplantation genetic diagnosis for aneuploidy screening in patients with unexplained recurrent miscarriages. Fertil Steril 83(2):393–397. https://doi.org/10.1016/j.fertnstert.2004.06.071

    Article  PubMed  Google Scholar 

  28. Rubio C, Buendía P, Rodrigo L, Mercader A, Mateu E, Peinado V, Delgado A, Milán M, Mir P, Simón C et al (2009) Prognostic factors for preimplantation genetic screening in repeated pregnancy loss. Reprod Biomed Online 18(5):687–693. https://doi.org/10.1016/s1472-6483(10)60015-6

    Article  PubMed  Google Scholar 

  29. Kort JD, McCoy RC, Demko Z, Lathi RB (2018) Are blastocyst aneuploidy rates different between fertile and infertile populations? J Assist Reprod Genet 35(3):403–408. https://doi.org/10.1007/s10815-017-1060-x

    Article  PubMed  Google Scholar 

  30. Liu XY, Fan Q, Wang J, Li R, Xu Y, Guo J, Wang YZ, Zeng YH, Ding CH, Cai B et al (2020) Higher chromosomal abnormality rate in blastocysts from young patients with idiopathic recurrent pregnancy loss. Fertil Steril 113(4):853–864. https://doi.org/10.1016/j.fertnstert.2019.11.016

    Article  CAS  PubMed  Google Scholar 

  31. Rubio C, Rodrigo L, Garcia-Pascual C, Peinado V, Campos-Galindo I, Garcia-Herrero S, Simón C (2019) Clinical application of embryo aneuploidy testing by next-generation sequencing. Biol Reprod 101(6):1083–1090. https://doi.org/10.1093/biolre/ioz019

    Article  PubMed  Google Scholar 

  32. Alfarawati S, Fragouli E, Colls P, Stevens J, Gutiérrez-Mateo C, Schoolcraft WB, Katz-Jaffe MG, Wells D (2011) The relationship between blastocyst morphology, chromosomal abnormality, and embryo gender. Fertil Steril 95(2):520–524. https://doi.org/10.1016/j.fertnstert.2010.04.003

    Article  PubMed  Google Scholar 

  33. Capalbo A, Rienzi L, Cimadomo D, Maggiulli R, Elliott T, Wright G, Nagy ZS, Ubaldi FM (2014) Correlation between standard blastocyst morphology, euploidy, and implantation: an observational study in two centers involving 956 screened blastocysts. Hum Reprod 29(6):1173–1181. https://doi.org/10.1093/humrep/deu033

    Article  PubMed  Google Scholar 

  34. Minasi MG, Colasante A, Riccio T, Ruberti A, Casciani V, Scarselli F, Spinella F, Fiorentino F, Varricchio MT, Greco E (2016) Correlation between aneuploidy, standard morphology evaluation and morphokinetic development in 1730 biopsied blastocysts: a consecutive case series study. Hum Reprod 31(10):2245–2254. https://doi.org/10.1093/humrep/dew183

    Article  PubMed  Google Scholar 

  35. Cimadomo D, Soscia D, Vaiarelli A, Maggiulli R, Capalbo A, Ubaldi FM, Rienzi L (2019) Looking past the appearance: a comprehensive description of the clinical contribution of poor-quality blastocysts to increase live birth rates during cycles with aneuploidy testing. Hum Reprod 34(7):1206–1214. https://doi.org/10.1093/humrep/dez078

    Article  PubMed  Google Scholar 

  36. Kutteh WH (2015) Novel strategies for the management of recurrent pregnancy loss. Semin Reprod Med 33(3):161–168. https://doi.org/10.1055/s-0035-1552586

    Article  PubMed  Google Scholar 

  37. van den Berg MM, van Maarle MC, van Wely M (1822) Goddijn M (2012) Genetics of early miscarriage. Biochim Biophys Acta 12:1951–1959. https://doi.org/10.1016/j.bbadis.2012.07.001

    Article  CAS  Google Scholar 

  38. Wilson R, Geyer SH, Reissig L, Rose J, Szumska D, Hardman E, Prin F, McGuire C, Ramirez-Solis R, White J et al (2017) Highly variable penetrance of abnormal phenotypes in embryonic lethal knockout mice. Wellcome Open Res 27(1):1. https://doi.org/10.12688/wellcomeopenres.9899.2

    Article  CAS  Google Scholar 

  39. Ewington LJ, Tewary S, Brosens JJ (2019) New insights into the mechanisms underlying recurrent pregnancy loss. J Obstet Gynaecol Res 45(2):258–265. https://doi.org/10.1111/jog.13837

    Article  PubMed  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

TNE: protocol development, data analysis, manuscript writing. BFK: protocol development, manuscript writing. GM: data collection, data analysis. YZ: data analysis. AR: data collection. BM: manuscript editing. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Niyazi Emre Turgut.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

This study was approved by the Institutional Review Board on 24 January 2019 with a reference number of 48.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turgut, N.E., Boynukalin, F.K., Gultomruk, M. et al. The number of prior pregnancy losses does not impact euploidy rates in young patients with idiopathic recurrent pregnancy loss. Arch Gynecol Obstet 308, 1567–1575 (2023). https://doi.org/10.1007/s00404-023-07155-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-023-07155-w

Keywords

Navigation