Skip to main content
Log in

Association of embryo aneuploidy and sperm DNA damage in unexplained recurrent implantation failure patients under NGS-based PGT-A cycles

  • Gynecologic Endocrinology and Reproductive Medicine
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

Recurrent implantation failure (RIF) is one of the most common conditions affecting In Vitro Fertilization (IVF)/Intracytoplasmic sperm injection (ICSI) outcomes. Aneuploidy embryos, one of the main types of embryos-related factors, was reported to be a major contributor to RIF. The present study aimed to examine the association between sperm DNA fragmentation index (DFI) and outcomes of next-generation sequencing (NGS)-based preimplantation genetic testing for aneuploidy (PGT-A) in unexplained RIF patients.

Methods

This study analyzed 119 couples with unexplained RIF who underwent 119 PGT-A cycles between January, 2017 and March, 2022. The 119 males were divided into 3 groups according to their sperm DFI levels: Group1 (low, DFI ≤ 15%, n = 50), Group2 (medium, 15% < DFI < 30%, n = 41) and Group3 (high, DFI ≥ 30%, n = 28). Sperm DFI was measured by sperm chromatin structure analysis (SCSA) technique. Trophectoderm biopsy on day 5 or 6 were performed with NGS technique. The following outcomes of PGT-A were analyzed and compared: fertilization, good-quality embryos, aneuploidy rate, miscarriage, live birth and newborn defects.

Results

The component of aneuploidy embryos was significantly higher in high DFI group (42.71%) than that of medium group (28.39%) and low group (27.80%). The miscarriage rate of high DFI group (27.27%) and medium group (14.29%) is significantly higher than that of low group (0.00%). No significant differences were found regarding fertility, good-quality embryo rate, pregnancy rate, live birth rate or newborn defects among three groups.

Conclusion

The sperm DNA damage is associated with blastocyst aneuploidy and miscarriage rate in unexplained RIF cases. Embryo selection by PGT-A and efforts to decrease sperm DFI before IVF/ICSI treatments should be considered for those male patients with high DFI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Polanski LT, Baumgarten MN, Quenby S, Brosens J, Campbell BK, Raine-Fenning NJ (2014) What exactly do we mean by ‘recurrent implantation failure’? A systematic review and opinion. Reprod Biomed Online 28(4):409–423. https://doi.org/10.1016/j.rbmo.2013.12.006

    Article  PubMed  Google Scholar 

  2. Thornhill AR, deDie-Smulders CE, Geraedts JP, Harper JC, Harton GL, Lavery SA, Moutou C, Robinson MD, Schmutzler AG, Scriven PN et al (2005) ESHRE PGD consortium ‘best practice guidelines for clinical preimplantation genetic diagnosis (PGD) and preimplantation genetic screening (PGS).’ Hum Reprod 20(1):35–48. https://doi.org/10.1093/humrep/deh579

    Article  CAS  PubMed  Google Scholar 

  3. Pirtea P, Scott RT Jr., de Ziegler D, Ayoubi JM (2021) Recurrent implantation failure: how common is it? Curr Opin Obstet Gynecol 33(3):207–212. https://doi.org/10.1097/GCO.0000000000000698

    Article  PubMed  Google Scholar 

  4. Mazzilli R, Cimadomo D, Vaiarelli A, Capalbo A, Dovere L, Alviggi E, Dusi L, Foresta C, Lombardo F, Lenzi A, et al. (2017) Effect of the male factor on the clinical outcome of intracytoplasmic sperm injection combined with preimplantation aneuploidy testing: observational longitudinal cohort study of 1,219 consecutive cycles. Fertil Steril. 108(6):961-972 e963. https://doi.org/10.1016/j.fertnstert.2017.08.033

  5. Franasiak JM, Forman EJ, Hong KH, Werner MD, Upham KM, Treff NR, Scott RT (2014) Aneuploidy across individual chromosomes at the embryonic level in trophectoderm biopsies: changes with patient age and chromosome structure. J Assist Reprod Genet 31(11):1501–1509. https://doi.org/10.1007/s10815-014-0333-x

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zini A, Jamal W, Cowan L, Al-Hathal N (2011) Is sperm DNA damage associated with IVF embryo quality? A systematic review. J Assist Reprod Genet 28(5):391–397. https://doi.org/10.1007/s10815-011-9544-6

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ni K, Spiess AN, Schuppe HC, Steger K (2016) The impact of sperm protamine deficiency and sperm DNA damage on human male fertility: a systematic review and meta-analysis. Andrology 4(5):789–799. https://doi.org/10.1111/andr.12216

    Article  CAS  PubMed  Google Scholar 

  8. Rathke C, Baarends WM, Awe S, Renkawitz-Pohl R (2014) Chromatin dynamics during spermiogenesis. Biochim Biophys Acta 1839(3):155–168. https://doi.org/10.1016/j.bbagrm.2013.08.004

    Article  CAS  PubMed  Google Scholar 

  9. Sakkas D, Alvarez JG (2010) Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis. Fertil Steril 93(4):1027–1036. https://doi.org/10.1016/j.fertnstert.2009.10.046

    Article  CAS  PubMed  Google Scholar 

  10. Simon L, Zini A, Dyachenko A, Ciampi A, Carrell DT (2017) A systematic review and meta-analysis to determine the effect of sperm DNA damage on in vitro fertilization and intracytoplasmic sperm injection outcome. Asian J Androl 19(1):80–90. https://doi.org/10.4103/1008-682X.182822

    Article  PubMed  Google Scholar 

  11. Dar S, Grover SA, Moskovtsev SI, Swanson S, Baratz A, Librach CL (2013) In vitro fertilization-intracytoplasmic sperm injection outcome in patients with a markedly high DNA fragmentation index (>50%). Fertil Steril 100(1):75–80. https://doi.org/10.1016/j.fertnstert.2013.03.011

    Article  PubMed  Google Scholar 

  12. Bareh GM, Jacoby E, Binkley P, Chang TC, Schenken RS, Robinson RD (2016) Sperm deoxyribonucleic acid fragmentation assessment in normozoospermic male partners of couples with unexplained recurrent pregnancy loss: a prospective study. Fertil Steril. 105(2): 329-336 e321. https://doi.org/10.1016/j.fertnstert.2015.10.033

  13. Robinson L, Gallos ID, Conner SJ, Rajkhowa M, Miller D, Lewis S, Kirkman-Brown J, Coomarasamy A (2012) The effect of sperm DNA fragmentation on miscarriage rates: a systematic review and meta-analysis. Hum Reprod 27(10):2908–2917. https://doi.org/10.1093/humrep/des261

    Article  CAS  PubMed  Google Scholar 

  14. Rodrigo L, Mateu E, Mercader A, Cobo AC, Peinado V, Milan M, Al-Asmar N, Campos-Galindo I, Garcia-Herrero S, Mir P et al (2014) New tools for embryo selection: comprehensive chromosome screening by array comparative genomic hybridization. Biomed Res Int 2014:517125. https://doi.org/10.1155/2014/517125

    Article  PubMed  PubMed Central  Google Scholar 

  15. Palini S, De Stefani S, Primiterra M, Galluzzi L (2015) Pre-implantation genetic diagnosis and screening: now and the future. Gynecol Endocrinol 31(10):755–759. https://doi.org/10.3109/09513590.2015.1068752

    Article  CAS  PubMed  Google Scholar 

  16. Practice Committees of the American Society for Reproductive M, the Society for Assisted Reproductive Technology Electronic address Aao Practice Committees of the American Society for Reproductive M, the Society for Assisted Reproductive T (2018) The use of preimplantation genetic testing for aneuploidy (PGT-A): a committee opinion. Fertil Steril 109(3):429–436. https://doi.org/10.1016/j.fertnstert.2018.01.002

    Article  Google Scholar 

  17. Friedenthal J, Maxwell SM, Munne S, Kramer Y, McCulloh DH, McCaffrey C, Grifo JA (2018) Next generation sequencing for preimplantation genetic screening improves pregnancy outcomes compared with array comparative genomic hybridization in single thawed euploid embryo transfer cycles. Fertil Steril 109(4):627–632. https://doi.org/10.1016/j.fertnstert.2017.12.017

    Article  CAS  PubMed  Google Scholar 

  18. Ramos-Ibeas P, Calle A, Fernandez-Gonzalez R, Laguna-Barraza R, Pericuesta E, Calero A, Ramirez MA, Gutierrez-Adan A (2014) Intracytoplasmic sperm injection using DNA-fragmented sperm in mice negatively affects embryo-derived embryonic stem cells, reduces the fertility of male offspring and induces heritable changes in epialleles. PLoS One 9(4):e95625. https://doi.org/10.1371/journal.pone.0095625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ribas-Maynou J, Garcia-Peiro A, Fernandez-Encinas A, Amengual MJ, Prada E, Cortes P, Navarro J, Benet J (2012) Double stranded sperm DNA breaks, measured by comet assay, are associated with unexplained recurrent miscarriage in couples without a female factor. PLoS One 7(9):e44679. https://doi.org/10.1371/journal.pone.0044679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Best JC, Kohn T, Patel P, Blachman-Braun R, de Quadros E, Beyhan Z, Jacobs M, Ramasamy R (2021) Elevated sperm DNA fragmentation does not predict recurrent implantation failure. Andrologia 53(7):e14094. https://doi.org/10.1111/and.14094

    Article  CAS  PubMed  Google Scholar 

  21. Gat I, Tang K, Quach K, Kuznyetsov V, Antes R, Filice M, Zohni K, Librach C (2017) Sperm DNA fragmentation index does not correlate with blastocyst aneuploidy or morphological grading. PLoS One 12(6):e0179002. https://doi.org/10.1371/journal.pone.0179002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang H, Li G, Jin H, Guo Y, Sun Y (2019) The effect of sperm DNA fragmentation index on assisted reproductive technology outcomes and its relationship with semen parameters and lifestyle. Transl Androl Urol 8(4):356–365. https://doi.org/10.21037/tau.2019.06.22

    Article  PubMed  PubMed Central  Google Scholar 

  23. WHO Laboratory Manual for the Examination and Processing of Human Semen.(2010) 5th edn. World Health Organization, Geneva

  24. Evenson DP (2013) Sperm chromatin structure assay (SCSA(R)). Methods Mol Biol 927:147–164. https://doi.org/10.1007/978-1-62703-038-0_14

    Article  CAS  PubMed  Google Scholar 

  25. Tong J, Niu Y, Wan A, Zhang T (2021) Next-generation sequencing (NGS)-based preimplantation genetic testing for aneuploidy (PGT-A) of trophectoderm biopsy for recurrent implantation failure (RIF) patients: a retrospective study. Reprod Sci 28(7):1923–1929. https://doi.org/10.1007/s43032-021-00519-0

    Article  CAS  PubMed  Google Scholar 

  26. Gardner DK, Lane M, Stevens J, Schlenker T, Schoolcraft WB (2000) Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer. Fertil Steril 73(6):1155–1158. https://doi.org/10.1016/s0015-0282(00)00518-5

    Article  CAS  PubMed  Google Scholar 

  27. International statistical classification of diseases and related health problems (2016) 10th revision edn. World Health Organization, Geneva

  28. Cimadomo D, Craciunas L, Vermeulen N, Vomstein K, Toth B (2021) Definition, diagnostic and therapeutic options in recurrent implantation failure: an international survey of clinicians and embryologists. Hum Reprod 36(2):305–317. https://doi.org/10.1093/humrep/deaa317

    Article  CAS  PubMed  Google Scholar 

  29. Collins JA, Barnhart KT, Schlegel PN (2008) Do sperm DNA integrity tests predict pregnancy with in vitro fertilization? Fertil Steril 89(4):823–831. https://doi.org/10.1016/j.fertnstert.2007.04.055

    Article  PubMed  Google Scholar 

  30. Munne S, Alikani M, Tomkin G, Grifo J, Cohen J (2019) Reprint of: Embryo morphology, developmental rates, and maternal age are correlated with chromosome abnormalities. Fertil Steril 112(4 Suppl1):e71–e80. https://doi.org/10.1016/j.fertnstert.2019.08.076

    Article  PubMed  Google Scholar 

  31. Chatziparasidou A, Christoforidis N, Samolada G, Nijs M (2015) Sperm aneuploidy in infertile male patients: a systematic review of the literature. Andrologia 47(8):847–860. https://doi.org/10.1111/and.12362

    Article  CAS  PubMed  Google Scholar 

  32. Ramasamy R, Scovell JM, Kovac JR, Cook PJ, Lamb DJ, Lipshultz LI (2015) Fluorescence in situ hybridization detects increased sperm aneuploidy in men with recurrent pregnancy loss. Fertil Steril 103(4):906-909 e901. https://doi.org/10.1016/j.fertnstert.2015.01.029

    Article  PubMed  PubMed Central  Google Scholar 

  33. Carrell DT, Liu L, Peterson CM, Jones KP, Hatasaka HH, Erickson L, Campbell B (2003) Sperm DNA fragmentation is increased in couples with unexplained recurrent pregnancy loss. Arch Androl 49(1):49–55. https://doi.org/10.1080/01485010290099390

    Article  CAS  PubMed  Google Scholar 

  34. Erenpreiss J, Elzanaty S, Giwercman A (2008) Sperm DNA damage in men from infertile couples. Asian J Androl 10(5):786–790. https://doi.org/10.1111/j.1745-7262.2008.00417.x

    Article  PubMed  Google Scholar 

  35. Hardarson T, Caisander G, Sjogren A, Hanson C, Hamberger L, Lundin K (2003) A morphological and chromosomal study of blastocysts developing from morphologically suboptimal human pre-embryos compared with control blastocysts. Hum Reprod 18(2):399–407. https://doi.org/10.1093/humrep/deg092

    Article  CAS  PubMed  Google Scholar 

  36. Eaton JL, Hacker MR, Harris D, Thornton KL, Penzias AS (2009) Assessment of day-3 morphology and euploidy for individual chromosomes in embryos that develop to the blastocyst stage. Fertil Steril 91(6):2432–2436. https://doi.org/10.1016/j.fertnstert.2008.03.008

    Article  PubMed  Google Scholar 

  37. Fragouli E, Alfarawati S, Spath K, Wells D (2014) Morphological and cytogenetic assessment of cleavage and blastocyst stage embryos. Mol Hum Reprod 20(2):117–126. https://doi.org/10.1093/molehr/gat073

    Article  CAS  PubMed  Google Scholar 

  38. Asgari F, Gavahi A, Karimi M, Vatannejad A, Amjadi F, Aflatoonian R, Zandieh Z (2022) Risk of embryo aneuploidy is affected by the increase in sperm DNA damage in recurrent implantation failure patients under ICSI-CGH array cycles. Hum Fertil (Camb) 25(5):872–880. https://doi.org/10.1080/14647273.2021.1920054

    Article  CAS  PubMed  Google Scholar 

  39. Parrella A, Keating D, Cheung S, Xie P, Stewart JD, Rosenwaks Z, Palermo GD (2019) A treatment approach for couples with disrupted sperm DNA integrity and recurrent ART failure. J Assist Reprod Genet 36(10):2057–2066. https://doi.org/10.1007/s10815-019-01543-5

    Article  PubMed  PubMed Central  Google Scholar 

  40. Tang SS, Gao H, Zhao Y, Ma S (2010) Aneuploidy and DNA fragmentation in morphologically abnormal sperm. Int J Androl 33(1):e163-179. https://doi.org/10.1111/j.1365-2605.2009.00982.x

    Article  CAS  PubMed  Google Scholar 

  41. Miyamoto T, Hasuike S, Yogev L, Maduro MR, Ishikawa M, Westphal H, Lamb DJ (2003) Azoospermia in patients heterozygous for a mutation in SYCP3. Lancet 362(9397):1714–1719. https://doi.org/10.1016/S0140-6736(03)14845-3

    Article  CAS  PubMed  Google Scholar 

  42. Perrin A, Basinko A, Douet-Guilbert N, Gueganic N, Le Bris MJ, Amice V, De Braekeleer M, Morel F (2011) Aneuploidy and DNA fragmentation in sperm of carriers of a constitutional chromosomal abnormality. Cytogenet Genome Res 133(2–4):100–106. https://doi.org/10.1159/000323980

    Article  CAS  PubMed  Google Scholar 

  43. Perrin A, Nguyen MH, Bujan L, Vialard F, Amice V, Gueganic N, Douet-Guilbert N, De Braekeleer M, Morel F (2013) DNA fragmentation is higher in spermatozoa with chromosomally unbalanced content in men with a structural chromosomal rearrangement. Andrology 1(4):632–638. https://doi.org/10.1111/j.2047-2927.2013.00100.x

    Article  CAS  PubMed  Google Scholar 

  44. Kong A, Frigge ML, Masson G, Besenbacher S, Sulem P, Magnusson G, Gudjonsson SA, Sigurdsson A, Jonasdottir A, Jonasdottir A et al (2012) Rate of de novo mutations and the importance of father’s age to disease risk. Nature 488(7412):471–475. https://doi.org/10.1038/nature11396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ribas-Maynou J, Garcia-Peiro A, Fernandez-Encinas A, Abad C, Amengual MJ, Prada E, Navarro J, Benet J (2013) Comprehensive analysis of sperm DNA fragmentation by five different assays: TUNEL assay, SCSA, SCD test and alkaline and neutral Comet assay. Andrology 1(5):715–722. https://doi.org/10.1111/j.2047-2927.2013.00111.x

    Article  CAS  PubMed  Google Scholar 

  46. Kato T, Miyai S, Suzuki H, Murase Y, Ota S, Yamauchi H, Ammae M, Nakano T, Nakaoka Y, Inoue T et al (2022) Usefulness of combined NGS and QF-PCR analysis for product of conception karyotyping. Reprod Med Biol 21(1):e12449. https://doi.org/10.1002/rmb2.12449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We appreciate all laboratory technicians and biologists in charge of embryo biopsy and NGS analysis.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

PP: Data collection, manuscript writing, YL: Data collection, manuscript writing, XC: Project development, ZZ: Data collection and analysis, YM: Data collection and analysis, FD: Data collection and analysis.

Corresponding author

Correspondence to Xiangfeng Chen.

Ethics declarations

Conflict of interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ping, P., Liu, Y., Zheng, Z. et al. Association of embryo aneuploidy and sperm DNA damage in unexplained recurrent implantation failure patients under NGS-based PGT-A cycles. Arch Gynecol Obstet 308, 997–1005 (2023). https://doi.org/10.1007/s00404-023-07098-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-023-07098-2

Keywords

Navigation