Skip to main content
Log in

Effect of cesarean section on the risk of autism spectrum disorders/attention deficit hyperactivity disorder in offspring: a meta-analysis

  • Review
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

This study was conducted to investigate the relationship between cesarean section (CS) offspring and autism spectrum disorders (ASD)/attention deficit hyperactivity disorder (ADHD).

Methods

Searching of the databases (PubMed, Web of Science, Embase, and Cochrane Library) for studies on the relationship between mode of delivery and ASD/ADHD until August 2022. The primary outcome was the incidence of ASD/ADHD in the offspring.

Results

This meta-analysis included 35 studies (12 cohort studies and 23 case–control studies). Statistical results showed a higher risk of ASD (odds ratio (OR) = 1.25, P < 0.001) and ADHD (OR = 1.11, P < 0.001) in CS offspring compared to the VD group. Partial subgroup analysis showed no difference in ASD risk between CS and VD offspring in sibling-matched groups (OR = 0.98, P = 0.625). The risk of ASD was higher in females (OR = 1.66, P = 0.003) than in males (OR = 1.17, P = 0.004) in the CS offspring compared with the VD group. There was no difference in the risk of ASD between CS under regional anesthesia group and VD group (OR = 1.07, P = 0.173). However, the risk of ASD was higher in the CS offspring under general anesthesia than in the VD offspring (OR = 1.62, P < 0.001). CS offspring developed autism (OR = 1.38, P = 0.011) and pervasive developmental disorder-not otherwise specified (OR = 1.46, P = 0.004) had a higher risk than VD offspring, but there was no difference in Asperger syndrome (OR = 1.19, P = 0.115). Offspring born via CS had a higher incidence of ADHD in different subgroup analyses (sibling-matched, type of CS, and study design).

Conclusions

In this meta-analysis, CS was a risk factor for ASD/ADHD in offspring compared with VD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

The datasets supporting this article's conclusions are included within the article and its additional files.

Abbreviations

ASD:

Autism spectrum disorders

ADHD:

Attention deficit hyperactivity disorder

ID:

Intellectual disability

CS:

Cesarean section

VD:

Vaginal delivery

PRISMA:

Preferred reporting items for systematic reviews and meta-analyses

NOS:

Newcastle–Ottawa scale

PDD-NOS:

Pervasive developmental disorder-not otherwise specified

CI:

Confidence interval

OR:

Odds ratio

GA:

General anesthesia

RA:

Regional anesthesia

UCP:

Mitochondrial uncoupling protein

5-HT:

5-Hydroxytryptamine

NA:

Not available

ICD:

International classification of diseases

DSM:

Diagnostic and statistical manual of mental disorders

ADOS-G:

Autism diagnostic observation schedule–generetic

ADI-R:

Autism diagnostic interview–revised

CARS:

Childhood autism rating scale

K-SADS:

Schedule for affective disorders and schizophrenia for school-aged children

CPAP:

Continuous positive airway pressure

BMI:

Body mass index

ALSPAC:

Avon longitudinal study of parents and children

References

  1. Zhu HM, Yuan CH (2023) Liu ZS [Recent research on neurodevelopmental disorders in children]. Zhongguo Dang Dai Er Ke Za Zhi 25:91–97

    PubMed  Google Scholar 

  2. Thapar A, Cooper M (2016) Attention deficit hyperactivity disorder. Lancet 387:1240–1250

    Article  PubMed  Google Scholar 

  3. Lord C, Elsabbagh M, Baird G, Veenstra-Vanderweele J (2018) Autism spectrum disorder. Lancet 392:508–520

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zeidan J, Fombonne E, Scorah J, Ibrahim A, Durkin MS, Saxena S, Yusuf A, Shih A, Elsabbagh M (2022) Global prevalence of autism: A systematic review update. Autism Res 15:778–790

    Article  PubMed  PubMed Central  Google Scholar 

  5. Willcutt EG (2012) The prevalence of DSM-IV attention-deficit/hyperactivity disorder: a meta-analytic review. Neurotherapeutics 9:490–499

    Article  PubMed  PubMed Central  Google Scholar 

  6. Martin AJ (2014) The role of ADHD in academic adversity: disentangling ADHD effects from other personal and contextual factors. Sch Psychol Q 29:395–408

    Article  PubMed  Google Scholar 

  7. Loe IM, Feldman HM (2007) Academic and educational outcomes of children with ADHD. Ambul Pediatr 7:82–90

    Article  PubMed  Google Scholar 

  8. Capri T, Santoddi E, Fabio RA (2020) Multi-Source Interference Task paradigm to enhance automatic and controlled processes in ADHD. Res Dev Disabil 97:103542

    Article  PubMed  Google Scholar 

  9. Amiri S, Sadeghi-Bazargani H, Nazari S, Ranjbar F, Abdi S (2017) Attention deficit/hyperactivity disorder and risk of injuries: A systematic review and meta-analysis. J Inj Violence Res 9:95–105

    PubMed  PubMed Central  Google Scholar 

  10. Merrill RM, Merrill AW, Madsen M (2022) Attention-deficit hyperactivity disorder and comorbid mental health conditions associated with increased risk of injury. Psychiatry J 2022:2470973

    Article  PubMed  PubMed Central  Google Scholar 

  11. Faraone SV, Perlis RH, Doyle AE, Smoller JW, Goralnick JJ, Holmgren MA, Sklar P (2005) Molecular genetics of attention-deficit/hyperactivity disorder. Biol Psychiatry 57:1313–1323

    Article  CAS  PubMed  Google Scholar 

  12. Sandin S, Lichtenstein P, Kuja-Halkola R, Larsson H, Hultman CM, Reichenberg A (2014) The familial risk of autism. Jama 311:1770–1777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Duan G, Yao M, Ma Y, Zhang W (2014) Perinatal and background risk factors for childhood autism in central China. Psychiatry Res 220:410–417

    Article  PubMed  Google Scholar 

  14. Saroukhani S, Samms-Vaughan M, Lee M, Bach MA, Bressler J, Hessabi M, Grove ML, Shakespeare-Pellington S, Loveland KA, Rahbar MH (2020) Perinatal factors associated with autism spectrum disorder in jamaican children. J Autism Dev Disord 50:3341–3357

    Article  PubMed  PubMed Central  Google Scholar 

  15. Getahun D, Fassett MJ, Peltier MR, Wing DA, Xiang AH, Chiu V, Jacobsen SJ (2017) Association of perinatal risk factors with autism spectrum disorder. Am J Perinatol 34:295–304

    Article  PubMed  Google Scholar 

  16. Schieve LA, Rice C, Devine O, Maenner MJ, Lee LC, Fitzgerald R, Wingate MS, Schendel D, Pettygrove S, van Naarden BK, Durkin M (2011) Have secular changes in perinatal risk factors contributed to the recent autism prevalence increase? Development and application of a mathematical assessment model. Ann Epidemiol 21:930–945

    Article  PubMed  PubMed Central  Google Scholar 

  17. Al-Zalabani AH, Al-Jabree AH, Zeidan ZA (2019) Is cesarean section delivery associated with autism spectrum disorder? Neurosciences (Riyadh) 24:11–15

    Article  PubMed  Google Scholar 

  18. Silva D, Colvin L, Hagemann E, Bower C (2014) Environmental risk factors by gender associated with attention-deficit/hyperactivity disorder. Pediatrics 133:e14-22

    Article  PubMed  Google Scholar 

  19. Betran AP, Ye J, Moller AB, Souza JP, Zhang J (2021) Trends and projections of caesarean section rates: global and regional estimates. BMJ Glob Health 6:e005671

    Article  PubMed  PubMed Central  Google Scholar 

  20. Keag OE, Norman JE, Stock SJ (2018) Long-term risks and benefits associated with cesarean delivery for mother, baby, and subsequent pregnancies: Systematic review and meta-analysis. PLoS Med 15:e1002494

    Article  PubMed  PubMed Central  Google Scholar 

  21. Darabi B, Rahmati S, HafeziAhmadi MR, Badfar G, Azami M (2019) The association between caesarean section and childhood asthma: an updated systematic review and meta-analysis. Allergy Asthma Clin Immunol 15:62

    Article  PubMed  PubMed Central  Google Scholar 

  22. Polidano C, Zhu A, Bornstein JC (2017) The relation between cesarean birth and child cognitive development. Sci Rep 7:11483

    Article  PubMed  PubMed Central  Google Scholar 

  23. Moya-Pérez A, Luczynski P, Renes IB, Wang S, Borre Y, Anthony Ryan C, Knol J, Stanton C, Dinan TG, Cryan JF (2017) Intervention strategies for cesarean section-induced alterations in the microbiota-gut-brain axis. Nutr Rev 75:225–240

    Article  PubMed  PubMed Central  Google Scholar 

  24. Huberman Samuel M, Meiri G, Dinstein I, Flusser H, Michaelovski A, Bashiri A, Menashe I (2019) Exposure to general anesthesia may contribute to the association between cesarean delivery and autism spectrum disorder. J Autism Dev Disord 49:3127–3135

    Article  PubMed  Google Scholar 

  25. Yang Y, Lin J, Lu X, Xun G, Wu R, Li Y, Ou J, Shen Y, Xia K, Zhao J (2021) Anesthesia, sex and miscarriage history may influence the association between cesarean delivery and autism spectrum disorder. BMC Pediatr 21:62

    Article  PubMed  PubMed Central  Google Scholar 

  26. Burstyn I, Sithole F, Zwaigenbaum L (2010) Autism spectrum disorders, maternal characteristics and obstetric complications among singletons born in Alberta. Canada Chronic Dis Can 30:125–134

    Article  CAS  PubMed  Google Scholar 

  27. Maimburg RD, Vaeth M (2006) Perinatal risk factors and infantile autism. Acta Psychiatr Scand 114:257–264

    Article  CAS  PubMed  Google Scholar 

  28. Amiri S, Malek A, Sadegfard M, Abdi S (2012) Pregnancy-related maternal risk factors of attention-deficit hyperactivity disorder: a case-control study. ISRN Pediatr 2012:458064

    Article  PubMed  PubMed Central  Google Scholar 

  29. Halmøy A, Klungsøyr K, Skjærven R, Haavik J (2012) Pre- and perinatal risk factors in adults with attention-deficit/hyperactivity disorder. Biol Psychiatry 71:474–481

    Article  PubMed  Google Scholar 

  30. Rutayisire E, Wu X, Huang K, Tao S, Chen Y, Tao F (2018) Childhood emotional and behavior problems and their associations with cesarean delivery. Braz J Psychiatry 40:145–153

    Article  PubMed  Google Scholar 

  31. Andoy Galvan JA, Ramalingam PN, Patil SS, Bin Shobri MAS, Chinna K, Sahrir MS, Chidambaram K (2020) Mode of delivery, order of birth, parental age gap and autism spectrum disorder among Malaysian children: A case-control study. Heliyon 6:e05068

    Article  PubMed  PubMed Central  Google Scholar 

  32. Curran EA, Dalman C, Kearney PM, Kenny LC, Cryan JF, Dinan TG, Khashan AS (2015) Association between obstetric mode of delivery and autism spectrum disorder: a population-based sibling design study. JAMA Psychiat 72:935–942

    Article  Google Scholar 

  33. Sucksdorff M, Lehtonen L, Chudal R, Suominen A, Gissler M, Sourander A (2018) Lower Apgar scores and Caesarean sections are related to attention-deficit/hyperactivity disorder. Acta Paediatr 107:1750–1758

    Article  PubMed  Google Scholar 

  34. Curran EA, Khashan AS, Dalman C, Kenny LC, Cryan JF, Dinan TG, Kearney PM (2016) Obstetric mode of delivery and attention-deficit/hyperactivity disorder: a sibling-matched study. Int J Epidemiol 45:532–542

    Article  PubMed  Google Scholar 

  35. Curran EA, O’Neill SM, Cryan JF, Kenny LC, Dinan TG, Khashan AS, Kearney PM (2015) Research review: Birth by caesarean section and development of autism spectrum disorder and attention-deficit/hyperactivity disorder: a systematic review and meta-analysis. J Child Psychol Psychiatry 56:500–508

    Article  PubMed  Google Scholar 

  36. Bitsko RH, Holbrook JR, O’Masta B, Maher B, Cerles A, Saadeh K, Mahmooth Z, MacMillan LM, Rush M, Kaminski JW (2022) A systematic review and meta-analysis of prenatal, birth, and postnatal factors associated with attention-deficit/hyperactivity disorder in children. Prev Sci. https://doi.org/10.1007/s11121-022-01359-3

    Article  PubMed  PubMed Central  Google Scholar 

  37. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 339:b2700

    Article  PubMed  PubMed Central  Google Scholar 

  38. Stang A (2010) Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 25:603–605

    Article  PubMed  Google Scholar 

  39. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses Bmj 327:557–560

    PubMed  Google Scholar 

  40. Axelsson PB, Clausen TD, Petersen AH, Hageman I, Pinborg A, Kessing LV, Bergholt T, Rasmussen SC, Keiding N, Løkkegaard ECL (2019) Investigating the effects of cesarean delivery and antibiotic use in early childhood on risk of later attention deficit hyperactivity disorder. J Child Psychol Psychiatry 60:151–159

    Article  PubMed  Google Scholar 

  41. Perales-Marín A, Peraita-Costa I, Cervera-Boada P, Tellez de Meneses M, Llopis-González A, Marí-Bauset S, Morales-Suárez-Varela M (2021) Perinatal and obstetric predictors for autism spectrum disorder. J Autism Dev Disord 51:3908–3916

    Article  PubMed  Google Scholar 

  42. Liu KY, Teitler JO, Rajananda S, Chegwin V, Bearman PS, Hegyi T, Reichman NE (2022) Elective deliveries and the risk of autism. Am J Prev Med 63:68–76

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yip BHK, Leonard H, Stock S, Stoltenberg C, Francis RW, Gissler M, Gross R, Schendel D, Sandin S (2017) Caesarean section and risk of autism across gestational age: a multi-national cohort study of 5 million births. Int J Epidemiol 46:429–439

    PubMed  Google Scholar 

  44. Schieve LA, Tian LH, Baio J, Rankin K, Rosenberg D, Wiggins L, Maenner MJ, Yeargin-Allsopp M, Durkin M, Rice C, King L, Kirby RS, Wingate MS, Devine O (2014) Population attributable fractions for three perinatal risk factors for autism spectrum disorders, 2002 and 2008 autism and developmental disabilities monitoring network. Ann Epidemiol 24:260–266

    Article  PubMed  PubMed Central  Google Scholar 

  45. Dodds L, Fell DB, Shea S, Armson BA, Allen AC, Bryson S (2011) The role of prenatal, obstetric and neonatal factors in the development of autism. J Autism Dev Disord 41:891–902

    Article  PubMed  Google Scholar 

  46. Chien LN, Lin HC, Shao YH, Chiou ST, Chiou HY (2015) Risk of autism associated with general anesthesia during cesarean delivery: a population-based birth-cohort analysis. J Autism Dev Disord 45:932–942

    Article  PubMed  Google Scholar 

  47. Haglund NG, Källén KB (2011) Risk factors for autism and Asperger syndrome Perinatal factors and migration. Autism 15:163–183

    Article  PubMed  Google Scholar 

  48. Polo-Kantola P, Lampi KM, Hinkka-Yli-Salomäki S, Gissler M, Brown AS, Sourander A (2014) Obstetric risk factors and autism spectrum disorders in Finland. J Pediatr 164:358–365

    Article  PubMed  Google Scholar 

  49. Durkin MS, DuBois LA, Maenner MJ (2015) Inter-pregnancy intervals and the risk of autism spectrum disorder: results of a population-based study. J Autism Dev Disord 45:2056–2066

    Article  PubMed  PubMed Central  Google Scholar 

  50. Eriksson MA, Westerlund J, Anderlid BM, Gillberg C, Fernell E (2012) First-degree relatives of young children with autism spectrum disorders: some gender aspects. Res Dev Disabil 33:1642–1648

    Article  PubMed  Google Scholar 

  51. Hultman CM, Sparén P, Cnattingius S (2002) Perinatal risk factors for infantile autism. Epidemiology 13:417–423

    Article  PubMed  Google Scholar 

  52. Glasson EJ, Bower C, Petterson B, de Klerk N, Chaney G, Hallmayer JF (2004) Perinatal factors and the development of autism: a population study. Arch Gen Psychiatry 61:618–627

    Article  PubMed  Google Scholar 

  53. Zhang X, Lv CC, Tian J, Miao RJ, Xi W, Hertz-Picciotto I, Qi L (2010) Prenatal and perinatal risk factors for autism in China. J Autism Dev Disord 40:1311–1321

    Article  PubMed  PubMed Central  Google Scholar 

  54. Curran EA, Cryan JF, Kenny LC, Dinan TG, Kearney PM, Khashan AS (2016) Obstetrical mode of delivery and childhood behavior and psychological development in a British Cohort. J Autism Dev Disord 46:603–614

    Article  PubMed  Google Scholar 

  55. Murray E, Pearson R, Fernandes M, Santos IS, Barros FC, Victora CG, Stein A, Matijasevich A (2016) Are fetal growth impairment and preterm birth causally related to child attention problems and ADHD? Evidence from a comparison between high-income and middle-income cohorts. J Epidemiol Community Health 70:704–709

    Article  PubMed  Google Scholar 

  56. Ketzer CR, Gallois C, Martinez AL, Rohde LA, Schmitz M (2012) Is there an association between perinatal complications and attention-deficit/hyperactivity disorder-inattentive type in children and adolescents? Braz J Psychiatry 34:321–328

    Article  PubMed  Google Scholar 

  57. Brumbaugh JE, Weaver AL, Myers SM, Voigt RG, Katusic SK (2020) Gestational age, perinatal characteristics, and autism spectrum disorder: a birth cohort study. J Pediatr 220:175-183.e178

    Article  PubMed  PubMed Central  Google Scholar 

  58. Chien YL, Chou MC, Chou WJ, Wu YY, Tsai WC, Chiu YN, Gau SS (2019) Prenatal and perinatal risk factors and the clinical implications on autism spectrum disorder. Autism 23:783–791

    Article  PubMed  Google Scholar 

  59. Axelsson PB, Clausen TD, Petersen AH, Hageman I, Pinborg A, Kessing LV, Bergholt T, Rasmussen SC, Keiding N, Løkkegaard ECL (2019) Relation between infant microbiota and Autism?: results from a National cohort sibling design study. Epidemiology 30:52–60

    Article  PubMed  Google Scholar 

  60. Schrieken M, Visser J, Oosterling I, van Steijn D, Bons D, Draaisma J, van der Gaag RJ, Buitelaar J, Donders R, Rommelse N (2013) Head circumference and height abnormalities in autism revisited: the role of pre- and perinatal risk factors. Eur Child Adolesc Psychiatry 22:35–43

    Article  PubMed  Google Scholar 

  61. Bilder D, Pinborough-Zimmerman J, Miller J, McMahon W (2009) Prenatal, perinatal, and neonatal factors associated with autism spectrum disorders. Pediatrics 123:1293–1300

    Article  PubMed  Google Scholar 

  62. Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, Knight R (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A 107:11971–11975

    Article  PubMed  PubMed Central  Google Scholar 

  63. Biasucci G, Benenati B, Morelli L, Bessi E, Boehm G (2008) Cesarean delivery may affect the early biodiversity of intestinal bacteria. J Nutr 138:1796s–1800s

    Article  CAS  PubMed  Google Scholar 

  64. Mayer EA, Tillisch K, Gupta A (2015) Gut/brain axis and the microbiota. J Clin Invest 125:926–938

    Article  PubMed  PubMed Central  Google Scholar 

  65. Desbonnet L, Clarke G, Shanahan F, Dinan TG, Cryan JF (2014) Microbiota is essential for social development in the mouse. Mol Psychiatry 19:146–148

    Article  CAS  PubMed  Google Scholar 

  66. Diaz Heijtz R, Wang S, Anuar F, Qian Y, Björkholm B, Samuelsson A, Hibberd ML, Forssberg H, Pettersson S (2011) Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci U S A 108:3047–3052

    Article  PubMed  Google Scholar 

  67. Neufeld KM, Kang N, Bienenstock J, Foster JA (2011) Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil 23(255–264):e119

    PubMed  Google Scholar 

  68. Vuong HE, Hsiao EY (2017) Emerging roles for the gut microbiome in autism spectrum disorder. Biol Psychiatry 81:411–423

    Article  PubMed  Google Scholar 

  69. van Best N, Hornef MW, Savelkoul PH, Penders J (2015) On the origin of species: Factors shaping the establishment of infant’s gut microbiota. Birth Defects Res C Embryo Today 105:240–251

    Article  PubMed  Google Scholar 

  70. Valicenti-McDermott M, McVicar K, Rapin I, Wershil BK, Cohen H, Shinnar S (2006) Frequency of gastrointestinal symptoms in children with autistic spectrum disorders and association with family history of autoimmune disease. J Dev Behav Pediatr 27:S128-136

    Article  PubMed  Google Scholar 

  71. Madore C, Leyrolle Q, Lacabanne C, Benmamar-Badel A, Joffre C, Nadjar A, Layé S (2016) Neuroinflammation in Autism: plausible role of maternal inflammation, dietary omega 3, and microbiota. Neural Plast 2016:3597209

    Article  PubMed  PubMed Central  Google Scholar 

  72. Parracho HM, Bingham MO, Gibson GR, McCartney AL (2005) Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. J Med Microbiol 54:987–991

    Article  PubMed  Google Scholar 

  73. Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, Codelli JA, Chow J, Reisman SE, Petrosino JF, Patterson PH, Mazmanian SK (2013) Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155:1451–1463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Stevens AJ, Purcell RV, Darling KA, Eggleston MJF, Kennedy MA, Rucklidge JJ (2019) Human gut microbiome changes during a 10 week Randomised Control Trial for micronutrient supplementation in children with attention deficit hyperactivity disorder. Sci Rep 9:10128

    Article  PubMed  PubMed Central  Google Scholar 

  75. Juárez I, Gratton A, Flores G (2008) Ontogeny of altered dendritic morphology in the rat prefrontal cortex, hippocampus, and nucleus accumbens following Cesarean delivery and birth anoxia. J Comp Neurol 507:1734–1747

    Article  PubMed  Google Scholar 

  76. Xie J, Qin X, Shu L, Li P, Liu Z, Zhu P, Tao F, Huang K (2021) Caesarean section and offspring’s emotional development: Sex differences and the role of key neurotransmitters. Brain Res 1767:147562

    Article  CAS  PubMed  Google Scholar 

  77. Chiesa M, Rabiei H, Riffault B, Ferrari DC, Ben-Ari Y (2021) Brain volumes in mice are smaller at birth after term or preterm cesarean section delivery. Cereb Cortex 31:3579–3591

    Article  PubMed  Google Scholar 

  78. Sosa-Díaz N, Bringas ME, Atzori M, Flores G (2014) Prefrontal cortex, hippocampus, and basolateral amygdala plasticity in a rat model of autism spectrum. Synapse 68:468–473

    Article  PubMed  Google Scholar 

  79. Batty MJ, Liddle EB, Pitiot A, Toro R, Groom MJ, Scerif G, Liotti M, Liddle PF, Paus T, Hollis C (2010) Cortical gray matter in attention-deficit/hyperactivity disorder: a structural magnetic resonance imaging study. J Am Acad Child Adolesc Psychiatry 49:229–238

    PubMed  PubMed Central  Google Scholar 

  80. Hoogman M, Bralten J, Hibar DP, Mennes M, Zwiers MP, Schweren LSJ, van Hulzen KJE, Medland SE, Shumskaya E, Jahanshad N, Zeeuw P, Szekely E, Sudre G, Wolfers T, Onnink AMH, Dammers JT, Mostert JC, Vives-Gilabert Y, Kohls G, Oberwelland E, Seitz J, Schulte-Rüther M, Ambrosino S, Doyle AE, Høvik MF, Dramsdahl M, Tamm L, van Erp TGM, Dale A, Schork A, Conzelmann A, Zierhut K, Baur R, McCarthy H, Yoncheva YN, Cubillo A, Chantiluke K, Mehta MA, Paloyelis Y, Hohmann S, Baumeister S, Bramati I, Mattos P, Tovar-Moll F, Douglas P, Banaschewski T, Brandeis D, Kuntsi J, Asherson P, Rubia K, Kelly C, Martino AD, Milham MP, Castellanos FX, Frodl T, Zentis M, Lesch KP, Reif A, Pauli P, Jernigan TL, Haavik J, Plessen KJ, Lundervold AJ, Hugdahl K, Seidman LJ, Biederman J, Rommelse N, Heslenfeld DJ, Hartman CA, Hoekstra PJ, Oosterlaan J, Polier GV, Konrad K, Vilarroya O, Ramos-Quiroga JA, Soliva JC, Durston S, Buitelaar JK, Faraone SV, Shaw P, Thompson PM, Franke B (2017) Subcortical brain volume differences in participants with attention deficit hyperactivity disorder in children and adults: a cross-sectional mega-analysis. Lancet Psychiatry 4:310–319

    Article  PubMed  PubMed Central  Google Scholar 

  81. Simon-Areces J, Dietrich MO, Hermes G, Garcia-Segura LM, Arevalo MA, Horvath TL (2012) UCP2 induced by natural birth regulates neuronal differentiation of the hippocampus and related adult behavior. PLoS ONE 7:e42911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Seli E, Horvath TL (2013) Natural birth-induced UCP2 in brain development. Rev Endocr Metab Disord 14:347–350

    Article  CAS  PubMed  Google Scholar 

  83. Tremblay M, Stevens B, Sierra A, Wake H, Bessis A, Nimmerjahn A (2011) The role of microglia in the healthy brain. J Neurosci 31:16064–16069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Castillo-Ruiz A, Mosley M, Jacobs AJ, Hoffiz YC, Forger NG (2018) Birth delivery mode alters perinatal cell death in the mouse brain. Proc Natl Acad Sci U S A 115:11826–11831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cho CE, Norman M (2013) Cesarean section and development of the immune system in the offspring. Am J Obstet Gynecol 208:249–254

    Article  PubMed  Google Scholar 

  86. Martinez LD, Glynn LM, Sandman CA, Wing DA, Davis EP (2020) Cesarean delivery and infant cortisol regulation. Psychoneuroendocrinology 122:104862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wang JX (2009) Zhang WY [The influence of mode of delivery on the level of catecholamines in umbilical cord blood of neonates]. Zhonghua Yi Xue Za Zhi 89:1340–1342

    CAS  PubMed  Google Scholar 

  88. Griffin WC 3rd, Skinner HD, Salm AK, Birkle DL (2003) Mild prenatal stress in rats is associated with enhanced conditioned fear. Physiol Behav 79:209–215

    Article  CAS  PubMed  Google Scholar 

  89. Charmandari E, Kino T, Souvatzoglou E, Chrousos GP (2003) Pediatric stress: hormonal mediators and human development. Horm Res 59:161–179

    CAS  PubMed  Google Scholar 

  90. Boksa P, Zhang Y, Bestawros A (2002) Dopamine D1 receptor changes due to caesarean section birth: effects of anesthesia, developmental time course, and functional consequences. Exp Neurol 175:388–397

    Article  CAS  PubMed  Google Scholar 

  91. Buitelaar JK, Willemsen-Swinkels SH (2000) Medication treatment in subjects with autistic spectrum disorders. Eur Child Adolesc Psychiatry 9(Suppl 1):I85-97

    Article  PubMed  Google Scholar 

  92. Nyman ES, Ogdie MN, Loukola A, Varilo T, Taanila A, Hurtig T, Moilanen IK, Loo SK, McGough JJ, Järvelin MR, Smalley SL, Nelson SF, Peltonen L (2007) ADHD candidate gene study in a population-based birth cohort: association with DBH and DRD2. J Am Acad Child Adolesc Psychiatry 46:1614–1621

    Article  PubMed  Google Scholar 

  93. Schulpis KH, Vlachos GD, Karikas GA, Papakonstantinou ED, Vlachos DG, Papassotiriou I, Antsaklis A, Tsakiris S (2008) The effect of the mode of delivery on maternal-neonatal interleukin-6, biogenic amine and their precursor amino acid concentrations. Clin Chem Lab Med 46:1624–1630

    Article  CAS  PubMed  Google Scholar 

  94. Cai Y, Wang L, Nalvarte I, Xiao R, Li X, Fan X (2019) Citalopram attenuates social behavior deficits in the BTBR T(+)Itpr3(tf)/J mouse model of autism. Brain Res Bull 150:75–85

    Article  CAS  PubMed  Google Scholar 

  95. Moon C, Marion M, Thanos PK, Steiner H (2021) Fluoxetine potentiates oral methylphenidate-induced gene regulation in the rat striatum. Mol Neurobiol 58:4856–4870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gialloreti LE, Benvenuto A, Benassi F, Curatolo P (2014) Are caesarean sections, induced labor and oxytocin regulation linked to Autism Spectrum Disorders? Med Hypotheses 82:713–718

    Article  PubMed  Google Scholar 

  97. Nagano M, Saitow F, Higo S, Uzuki M, Mikahara Y, Akimoto T, Ozawa H, Nishimori K, Suzuki H (2021) Cesarean section delivery is a risk factor of autism-related behaviors in mice. Sci Rep 11:8883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Tyzio R, Nardou R, Ferrari DC, Tsintsadze T, Shahrokhi A, Eftekhari S, Khalilov I, Tsintsadze V, Brouchoud C, Chazal G, Lemonnier E, Lozovaya N, Burnashev N, Ben-Ari Y (2014) Oxytocin-mediated GABA inhibition during delivery attenuates autism pathogenesis in rodent offspring. Science 343:675–679

    Article  CAS  PubMed  Google Scholar 

  99. Uvnäs Moberg K, Ekström-Bergström A, Buckley S, Massarotti C, Pajalic Z, Luegmair K, Kotlowska A, Lengler L, Olza I, Grylka-Baeschlin S, Leahy-Warren P, Hadjigeorgiu E, Villarmea S, Dencker A (2020) Maternal plasma levels of oxytocin during breastfeeding-A systematic review. PLoS ONE 15:e0235806

    Article  PubMed  PubMed Central  Google Scholar 

  100. Shamberger R (2012) Attention-deficit disorder associated with breast-feeding: a brief report. J Am Coll Nutr 31:239–242

    Article  PubMed  Google Scholar 

  101. Li L, Wan W, Zhu C (2021) Breastfeeding after a cesarean section: A literature review. Midwifery 103:103117

    Article  PubMed  Google Scholar 

  102. Heikkilä K, Sacker A, Kelly Y, Renfrew MJ, Quigley MA (2011) Breast feeding and child behaviour in the Millennium Cohort Study. Arch Dis Child 96:635–642

    Article  PubMed  Google Scholar 

  103. Bar S, Milanaik R, Adesman A (2016) Long-term neurodevelopmental benefits of breastfeeding. Curr Opin Pediatr 28:559–566

    Article  PubMed  Google Scholar 

  104. Olutoye OA, Baker BW, Belfort MA, Olutoye OO (2018) Food and Drug Administration warning on anesthesia and brain development: implications for obstetric and fetal surgery. Am J Obstet Gynecol 218:98–102

    Article  PubMed  Google Scholar 

  105. Sumikura H, Niwa H, Sato M, Nakamoto T, Asai T, Hagihira S (2016) Rethinking general anesthesia for cesarean section. J Anesth 30:268–273

    Article  PubMed  Google Scholar 

  106. Castellheim A, Lundström S, Molin M, Kuja-Halkola R, Gillberg C, Gillberg C (2018) The role of general anesthesia on traits of neurodevelopmental disorders in a Swedish cohort of twins. J Child Psychol Psychiatry 59:966–972

    Article  PubMed  Google Scholar 

  107. Rappaport BA, Suresh S, Hertz S, Evers AS, Orser BA (2015) Anesthetic neurotoxicity–clinical implications of animal models. N Engl J Med 372:796–797

    Article  CAS  PubMed  Google Scholar 

  108. Ikeda T, Kato A, Bougaki M, Araki Y, Ohata T, Kawashima S, Imai Y, Ninagawa J, Oba K, Chang K, Uchida K, Yamada Y (2020) A retrospective review of 10-year trends in general anesthesia for cesarean delivery at a university hospital: the impact of a newly launched team on obstetric anesthesia practice. BMC Health Serv Res 20:421

    Article  PubMed  PubMed Central  Google Scholar 

  109. Creeley C, Dikranian K, Dissen G, Martin L, Olney J, Brambrink A (2013) Propofol-induced apoptosis of neurones and oligodendrocytes in fetal and neonatal rhesus macaque brain. Br J Anaesth 110(Suppl 1):i29-38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Huang J, Jing S, Chen X, Bao X, Du Z, Li H, Yang T, Fan X (2016) Propofol administration during early postnatal life suppresses hippocampal neurogenesis. Mol Neurobiol 53:1031–1044

    Article  CAS  PubMed  Google Scholar 

  111. Palanisamy A, Baxter MG, Keel PK, Xie Z, Crosby G, Culley DJ (2011) Rats exposed to isoflurane in utero during early gestation are behaviorally abnormal as adults. Anesthesiology 114:521–528

    Article  CAS  PubMed  Google Scholar 

  112. Tita AT, Landon MB, Spong CY, Lai Y, Leveno KJ, Varner MW, Moawad AH, Caritis SN, Meis PJ, Wapner RJ, Sorokin Y, Miodovnik M, Carpenter M, Peaceman AM, O’Sullivan MJ, Sibai BM, Langer O, Thorp JM, Ramin SM, Mercer BM (2009) Timing of elective repeat cesarean delivery at term and neonatal outcomes. N Engl J Med 360:111–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. O’Donovan C, O’Donovan J (2018) Why do women request an elective cesarean delivery for non-medical reasons? A systematic review of the qualitative literature. Birth 45:109–119

    Article  PubMed  Google Scholar 

  114. Tschudin S, Alder J, Hendriksen S, Bitzer J, Popp KA, Zanetti R, Hösli I, Holzgreve W, Geissbühler V (2009) Previous birth experience and birth anxiety: predictors of caesarean section on demand? J Psychosom Obstet Gynaecol 30:175–180

    Article  PubMed  Google Scholar 

  115. Handelzalts JE, Becker G, Ahren MP, Lurie S, Raz N, Tamir Z, Sadan O (2015) Personality, fear of childbirth and birth outcomes in nulliparous women. Arch Gynecol Obstet 291:1055–1062

    Article  PubMed  Google Scholar 

  116. Ryding EL, Wijma K, Wijma B (1998) Psychological impact of emergency cesarean section in comparison with elective cesarean section, instrumental and normal vaginal delivery. J Psychosom Obstet Gynaecol 19:135–144

    Article  CAS  PubMed  Google Scholar 

  117. Donovan SJ, Susser E (2011) Commentary: Advent of sibling designs. Int J Epidemiol 40:345–349

    Article  PubMed  PubMed Central  Google Scholar 

  118. Zachariassen LF, Sørensen DB, Krych L, Hansen AK, Hansen CHF (2021) Effects of delivery mode on behavior in mouse offspring. Physiol Behav 230:113285

    Article  CAS  PubMed  Google Scholar 

  119. Rynkiewicz A, Schuller B, Marchi E, Piana S, Camurri A, Lassalle A, Baron-Cohen S (2016) An investigation of the “female camouflage effect” in autism using a computerized ADOS-2 and a test of sex/gender differences. Mol Autism 7:10

    Article  PubMed  PubMed Central  Google Scholar 

  120. Loomes R, Hull L, Mandy WPL (2017) What is the male-to-female ratio in autism spectrum disorder? A systematic review and meta-analysis. J Am Acad Child Adolesc Psychiatry 56:466–474

    Article  PubMed  Google Scholar 

  121. Walker DR, Thompson A, Zwaigenbaum L, Goldberg J, Bryson SE, Mahoney WJ, Strawbridge CP, Szatmari P (2004) Specifying PDD-NOS: a comparison of PDD-NOS, Asperger syndrome, and autism. J Am Acad Child Adolesc Psychiatry 43:172–180

    Article  PubMed  Google Scholar 

  122. Mayes SD, Calhoun SL, Crites DL (2001) Does DSM-IV Asperger’s disorder exist? J Abnorm Child Psychol 29:263–271

    Article  CAS  PubMed  Google Scholar 

  123. Saulnier CA, Klin A (2007) Brief report: social and communication abilities and disabilities in higher functioning individuals with autism and Asperger syndrome. J Autism Dev Disord 37:788–793

    Article  PubMed  Google Scholar 

  124. Zhang T, Sidorchuk A, Sevilla-Cermeño L, Vilaplana-Pérez A, Chang Z, Larsson H, Mataix-Cols D, Fernández de la Cruz L (2019) Association of Cesarean Delivery With Risk of Neurodevelopmental and Psychiatric Disorders in the Offspring: A Systematic Review and Meta-analysis. JAMA Netw Open 2:e1910236

    Article  PubMed  PubMed Central  Google Scholar 

  125. Xu LL, Zhang X, Zhou GL, Jiang CM, Jiang HY, Zhou YY (2020) Meta-analysis found that studies may have overestimated Caesarean section risks for attention-deficit hyperactivity disorder by ignoring confounding factors. Acta Paediatr 109:258–265

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

None.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

MJY designed the research process. MLC and YTL searched the database for corresponding articles. RRF and CYY extracted useful information from the articles above. YTL and HJST used statistical software for analysis. MLC, CYY and JY drafted the meta-analysis. MJY, JNH and YJH polished this article. All authors had read and approved the manuscript and ensured that this was the case.

Corresponding author

Correspondence to Mengjiao Yu.

Ethics declarations

Conflicts of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

404_2023_7059_MOESM1_ESM.docx

Supplementary file1 (DOCX 19 KB) Supplementary Table 1. Characteristics of all the studies included in the meta-analysis

Supplementary file2 (DOCX 16 KB) Supplementary Table 2. Quality assessment of cohort studies included

Supplementary file3 (DOCX 18 KB) Supplementary Table 3. Quality assessment of case-control studies included

404_2023_7059_MOESM4_ESM.tif

Supplementary file4 (TIF 78 KB) SFigure. 1. Publication bias of the relationship between cesarean section and risk of autism spectrum disorders (P=0.237)

404_2023_7059_MOESM5_ESM.tif

Supplementary file5 (TIF 230 KB) SFigure. 2. Sensitivity analysis of the association between cesarean section and risk of autism spectrum disorders

404_2023_7059_MOESM6_ESM.tif

Supplementary file6 (TIF 76 KB) SFigure. 3. Publication bias of the relationship between cesarean section and risk of attention deficit hyperactivity disorder (P=0.650)

404_2023_7059_MOESM7_ESM.tif

Supplementary file7 (TIF 520 KB) SFigure. 4. Sensitivity analysis of the association between cesarean section and risk of attention deficit hyperactivity disorder

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Lin, Y., Yu, C. et al. Effect of cesarean section on the risk of autism spectrum disorders/attention deficit hyperactivity disorder in offspring: a meta-analysis. Arch Gynecol Obstet 309, 439–455 (2024). https://doi.org/10.1007/s00404-023-07059-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-023-07059-9

Keywords

Navigation