Skip to main content
Log in

An all-37 °C thawing method improves the clinical outcomes of vitrified frozen-thawed embryo transfer: a retrospective study using a case–control matching analysis

  • Gynecologic Endocrinology and Reproductive Medicine
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study is to assess the impact of different temperatures and incubation times on the clinical outcomes of FET cycles during the thawing procedure and to select a better thawing method to improve clinical outcomes.

Methods

This retrospective study included 1734 FET cycles from January 1, 2020, to January 30, 2022. Embryos vitrified using a KITAZATO Vitrification Kit were thawed at 37 °C in all steps (the case group, denoted the “all-37 °C” group) or at 37 °C and then at room temperature (RT; the control group, denoted the “37 °C-RT” group), according to the kit instructions. The groups were matched 1:1 to avoid confounding.

Results

After case–control matching, 366 all-37 °C cycles and 366 37 °C-RT cycles were included. The baseline characteristics were similar (all P > 0.05) between the two groups after matching. FET of the all-37 °C group yielded a higher clinical pregnancy rate (CPR; P = 0.009) and implantation rate (IR; P = 0.019) than FET of the 37 °C-RT group. For blastocyst transfers, the CPR (P = 0.019) and IR (P = 0.025) were significantly higher in the all-37 °C group than in the 37 °C-RT group. For D3-embryo transfers, the CPR and IR were non-significantly higher in the all-37 °C group than in the 37 °C-RT group (P > 0.05).

Conclusions

Thawing vitrified embryos at 37 °C in all steps with shortening wash time can enhance CPR and IR in FET cycles. Well-designed prospective studies are warranted to further evaluate the efficacy and safety of the all-37 °C thawing method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the finding of this study are available within the article.

References

  1. Barnhart KT (2014) Introduction: are we ready to eliminate the transfer of fresh embryos in vitro fertilization? Fertil Steril 102:1–2. https://doi.org/10.1016/j.fertnstert.2014.05.024

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wong KM, Mastenbroek S, Repping S (2014) Cryopreservation of human embryos and its contribution to in vitro fertilization success rates. Fertil Steril 102:19–26. https://doi.org/10.1016/j.fertnstert.2014.05.027

    Article  CAS  PubMed  Google Scholar 

  3. Maheshwari A, Pandey S, Amalraj Raja E, Shetty A, Hamilton M, Bhattacharya S (2018) Is frozen embryo transfer better for mothers and babies? Can cumulative meta-analysis provide a definitive answer? Hum Reprod Update 24:35–58. https://doi.org/10.1093/humupd/dmx031

    Article  PubMed  Google Scholar 

  4. Roque M, Haahr T, Geber S, Esteves SC, Humaidan P (2019) Fresh versus elective frozen embryo transfer in IVF/ICSI cycles: a systematic review and meta-analysis of reproductive outcomes. Hum Reprod Update 25:2–14. https://doi.org/10.1093/humupd/dmy033

    Article  PubMed  Google Scholar 

  5. Wei D, Liu JY, Sun Y, Shi Y, Zhang B, Liu JQ, Tan J, Liang X, Cao Y, Wang Z, Qin Y, Zhao H, Zhou Y, Ren H, Hao G, Ling X, Zhao J, Zhang Y, Qi X, Zhang L, Deng X, Chen X, Zhu Y, Wang X, Tian LF, Lv Q, Ma X, Zhang H, Legro RS, Chen ZJ (2019) Frozen versus fresh single blastocyst transfer in ovulatory women: a multicentre, randomised controlled trial. Lancet 393:1310–1318. https://doi.org/10.1016/s0140-6736(18)32843-5

    Article  PubMed  Google Scholar 

  6. Raja EA, Bhattacharya S, Maheshwari A, McLernon DJ (2022) Comparison of perinatal outcomes after frozen or fresh embryo transfer: separate analyses of singleton, twin, and sibling live births from a linked national in vitro fertilization registry. Fertil Steril. https://doi.org/10.1016/j.fertnstert.2022.05.010

    Article  PubMed  Google Scholar 

  7. Jin B, Kusanagi K, Ueda M, Seki S, Valdez DM Jr, Edashige K, Kasai M (2008) Formation of extracellular and intracellular ice during warming of vitrified mouse morulae and its effect on embryo survival. Cryobiology 56:233–240. https://doi.org/10.1016/j.cryobiol.2008.03.004

    Article  CAS  PubMed  Google Scholar 

  8. Jin B, Seki S, Paredes E, Qiu J, Shi Y, Zhang Z, Ma C, Jiang S, Li J, Yuan F, Wang S, Shao X, Mazur P (2016) Intracellular ice formation in mouse zygotes and early morulae vs. cooling rate and temperature-experimental vs. theory. Cryobiology 73:181–186. https://doi.org/10.1016/j.cryobiol.2016.07.014

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rall WF (1987) Factors affecting the survival of mouse embryos cryopreserved by vitrification. Cryobiology 24:387–402. https://doi.org/10.1016/0011-2240(87)90042-3

    Article  CAS  PubMed  Google Scholar 

  10. Best BP (2015) Cryoprotectant toxicity: facts, issues, and questions. Rejuvenation Res 18:422–436. https://doi.org/10.1089/rej.2014.1656

    Article  PubMed  PubMed Central  Google Scholar 

  11. Edgar DH, Gook DA (2012) A critical appraisal of cryopreservation (slow cooling versus vitrification) of human oocytes and embryos. Hum Reprod Update 18:536–554. https://doi.org/10.1093/humupd/dms016

    Article  PubMed  Google Scholar 

  12. Whittingham DG, Leibo SP, Mazur P (1972) Survival of mouse embryos frozen to -196 degrees and -269 degrees C. Science 178:411–414

    Article  CAS  PubMed  Google Scholar 

  13. Rall WF, Fahy GM (1985) Ice-free cryopreservation of mouse embryos at -196 degrees C by vitrification. Nature 313:573–575. https://doi.org/10.1038/313573a0

    Article  CAS  PubMed  Google Scholar 

  14. Vanderzwalmen P, Connan D, Grobet L, Wirleitner B, Remy B, Vanderzwalmen S, Zech N, Ectors FJ (2013) Lower intracellular concentration of cryoprotectants after vitrification than after slow freezing despite exposure to higher concentration of cryoprotectant solutions. Hum Reprod 28:2101–2110. https://doi.org/10.1093/humrep/det107

    Article  CAS  PubMed  Google Scholar 

  15. Balaban B, Urman B, Ata B, Isiklar A, Larman MG, Hamilton R, Gardner DK (2008) A randomized controlled study of human Day 3 embryo cryopreservation by slow freezing or vitrification: vitrification is associated with higher survival, metabolism and blastocyst formation. Hum Reprod 23:1976–1982. https://doi.org/10.1093/humrep/den222

    Article  CAS  PubMed  Google Scholar 

  16. Kopeika J, Thornhill A, Khalaf Y (2015) The effect of cryopreservation on the genome of gametes and embryos: principles of cryobiology and critical appraisal of the evidence. Hum Reprod Update 21:209–227. https://doi.org/10.1093/humupd/dmu063

    Article  CAS  PubMed  Google Scholar 

  17. Rienzi L, Gracia C, Maggiulli R, LaBarbera AR, Kaser DJ, Ubaldi FM, Vanderpoel S, Racowsky C (2017) Oocyte, embryo and blastocyst cryopreservation in ART: systematic review and meta-analysis comparing slow-freezing versus vitrification to produce evidence for the development of global guidance. Hum Reprod Update 23:139–155. https://doi.org/10.1093/humupd/dmw038

    Article  CAS  PubMed  Google Scholar 

  18. Gu F, Li S, Zheng L, Gu J, Li T, Du H, Gao C, Ding C, Quan S, Zhou C, Li P, Xu Y (2019) Perinatal outcomes of singletons following vitrification versus slow-freezing of embryos: a multicenter cohort study using propensity score analysis. Hum Reprod 34:1788–1798. https://doi.org/10.1093/humrep/dez095

    Article  PubMed  Google Scholar 

  19. Nagy ZP, Shapiro D, Chang CC (2020) Vitrification of the human embryo: a more efficient and safer in vitro fertilization treatment. Fertil Steril 113:241–247. https://doi.org/10.1016/j.fertnstert.2019.12.009

    Article  CAS  PubMed  Google Scholar 

  20. Liu WX, Lu H, Luo MJ, Xu LZ (2011) Effects of different cryoprotectants and cryopreservation protocols on the development of 2–4 cell mouse embryos. Cryo Letters 32:240–247

    CAS  PubMed  Google Scholar 

  21. Seki S, Jin B, Mazur P (2014) Extreme rapid warming yields high functional survivals of vitrified 8-cell mouse embryos even when suspended in a half-strength vitrification solution and cooled at moderate rates to -196°C. Cryobiology 68:71–78. https://doi.org/10.1016/j.cryobiol.2013.12.001

    Article  PubMed  Google Scholar 

  22. Mitsuhata S, Hayashi M, Fujii Y, Motoyama H, Endo Y (2020) Effect of equilibration time on clinical and neonatal outcomes in human blastocysts vitrification. Reprod Med Biol 19:270–276. https://doi.org/10.1002/rmb2.12328

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mazur P, Pinn IL, Kleinhans FW (2007) Intracellular ice formation in mouse oocytes subjected to interrupted rapid cooling. Cryobiology 55:158–166. https://doi.org/10.1016/j.cryobiol.2007.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Seki S, Mazur P (2008) Kinetics and activation energy of recrystallization of intracellular ice in mouse oocytes subjected to interrupted rapid cooling. Cryobiology 56:171–180. https://doi.org/10.1016/j.cryobiol.2008.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Seki S, Mazur P (2009) The dominance of warming rate over cooling rate in the survival of mouse oocytes subjected to a vitrification procedure. Cryobiology 59:75–82. https://doi.org/10.1016/j.cryobiol.2009.04.012

    Article  PubMed  PubMed Central  Google Scholar 

  26. Seki S, Mazur P (2010) The temperature and type of intracellular ice formation in preimplantation mouse embryos as a functio n of the developmental stage. Biol Reprod 82:1198–1205. https://doi.org/10.1095/biolreprod.109.083063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sanchez-Osorio J, Cuello C, Gil MA, Almiñana C, Parrilla I, Caballero I, Garcia EM, Vazquez JM, Roca J, Martinez EA (2008) Factors affecting the success rate of porcine embryo vitrification by the Open Pulled Straw method. Anim Reprod Sci 108:334–344. https://doi.org/10.1016/j.anireprosci.2007.09.001

    Article  CAS  PubMed  Google Scholar 

  28. Seki S, Mazur P (2008) Effect of warming rate on the survival of vitrified mouse oocytes and on the recrystallization of intracellular ice. Biol Reprod 79:727–737. https://doi.org/10.1095/biolreprod.108.069401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Seki S, Mazur P (2012) Ultra-rapid warming yields high survival of mouse oocytes cooled to -196°c in dilutions of a standard vitrification solution. PLoS ONE 7:e36058. https://doi.org/10.1371/journal.pone.0036058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Seki S, Basaki K, Komatsu Y, Fukuda Y, Yano M, Matsuo Y, Obata T, Matsuda Y, Nishijima K (2018) Vitrification of one-cell mouse embryos in cryotubes. Cryobiology 81:132–137. https://doi.org/10.1016/j.cryobiol.2018.01.013

    Article  CAS  PubMed  Google Scholar 

  31. Truong TT, Gardner DK (2020) Antioxidants increase blastocyst cryosurvival and viability post-vitrification. Hum Reprod 35:12–23. https://doi.org/10.1093/humrep/dez243

    Article  CAS  PubMed  Google Scholar 

  32. Balaban B, Brison D, Calderón G, Catt J, Conaghan J, Cowan L, Ebner T, Gardner D, Hardarson T, Lundin K, Cristina Magli M, Mortimer D, Mortimer S, Munné S, Royere D, Scott L, Smitz J, Thornhill A, van Blerkom J, Van den Abbeel E (2011) The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Hum Reprod 26:1270–1283. https://doi.org/10.1093/humrep/der037

    Article  Google Scholar 

  33. Gardner DK, Lane M, Stevens J, Schlenker T, Schoolcraft WB (2000) Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer. Fertil Steril 73:1155–1158. https://doi.org/10.1016/s0015-0282(00)00518-5

    Article  CAS  PubMed  Google Scholar 

  34. Son WY, Yoon SH, Yoon HJ, Lee SM, Lim JH (2003) Pregnancy outcome following transfer of human blastocysts vitrified on electron microscopy grids after induced collapse of the blastocoele. Hum Reprod 18:137–139. https://doi.org/10.1093/humrep/deg029

    Article  CAS  PubMed  Google Scholar 

  35. Parmegiani L, Beilby KH, Arnone A, Bernardi S, Maccarini AM, Nardi E, Cognigni GE, Filicori M (2018) Testing the efficacy and efficiency of a single “universal warming protocol” for vitrified human embryos: prospective randomized controlled trial and retrospective longitudinal cohort study. J Assist Reprod Genet 35:1887–1895. https://doi.org/10.1007/s10815-018-1276-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Parmegiani L, Minasi MG, Arnone A, Casciani V, Cognigni GE, Viñoles R, Varricchio MT, Quintero LA, Greco E, Filicori M (2020) “Universal Warming” protocol for vitrified oocytes to streamline cell exchange for transnational donation programs: a multi-center study. J Assist Reprod Genet 37:1379–1385. https://doi.org/10.1007/s10815-020-01798-3

    Article  PubMed  PubMed Central  Google Scholar 

  37. Canosa S, Parmegiani L, Charrier L, Gennarelli G, Garello C, Granella F, Evangelista F, Monelli G, Guidetti D, Revelli A, Filicori M, Bongioanni F (2022) Are commercial warming kits interchangeable for vitrified human blastocysts? Further evidence for the adoption of a Universal Warming protocol. J Assist Reprod Genet 39:67–73. https://doi.org/10.1007/s10815-021-02364-1

    Article  PubMed  Google Scholar 

  38. Vincent C, Pickering SJ, Johnson MH, Quick SJ (1990) Dimethylsulphoxide affects the organisation of microfilaments in the mouse oocyte. Mol Reprod Dev 26:227–235. https://doi.org/10.1002/mrd.1080260306

    Article  CAS  PubMed  Google Scholar 

  39. Gwazdauskas FC, McCaffrey C, McEvoy TG, Sreenan JM (1992) In vitro preimplantation mouse embryo development with incubation temperatures of 37 and 39 degrees C. J Assist Reprod Genet 9:149–154. https://doi.org/10.1007/BF01203755

    Article  CAS  PubMed  Google Scholar 

  40. Fawzy M, Emad M, Gad MA, Sabry M, Kasem H, Mahmoud M, Bedaiwy MA (2018) Comparing 36.5°C with 37°C for human embryo culture: a prospective randomized controlled trial. Reprod Biomed Online 36:620–626. https://doi.org/10.1016/j.rbmo.2018.03.011

    Article  PubMed  Google Scholar 

  41. Fasano G, Fontenelle N, Vannin AS, Biramane J, Devreker F, Englert Y, Delbaere A (2014) A randomized controlled trial comparing two vitrification methods versus slow-freezing for cryopreservation of human cleavage stage embryos. J Assist Reprod Genet 31:241–247. https://doi.org/10.1007/s10815-013-0145-4

    Article  PubMed  Google Scholar 

  42. Hotamisligil S, Toner M, Powers RD (1996) Changes in membrane integrity, cytoskeletal structure, and developmental potential of murine oocytes after vitrification in ethylene glycol. Biol Reprod 55:161–168. https://doi.org/10.1095/biolreprod55.1.161

    Article  CAS  PubMed  Google Scholar 

  43. Hong SW, Chung HM, Lim JM, Ko JJ, Yoon TK, Yee B, Cha KY (1999) Improved human oocyte development after vitrification: a comparison of thawing methods. Fertil Steril 72:142–146. https://doi.org/10.1016/s0015-0282(99)00199-5

    Article  CAS  PubMed  Google Scholar 

  44. Momozawa K, Matsuzawa A, Tokunaga Y, Abe S, Koyanagi Y, Kurita M, Nakano M, Miyake T (2017) Efficient vitrification of mouse embryos using the Kitasato Vitrification System as a novel vitrification device. Reprod Biol Endocrinol 15:29. https://doi.org/10.1186/s12958-017-0249-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Edashige K (2017) Permeability of the plasma membrane to water and cryoprotectants in mammalian oocytes and embryos: Its relevance to vitrification. Reprod Med Biol 16:36–39. https://doi.org/10.1002/rmb2.12007

    Article  CAS  PubMed  Google Scholar 

  46. Offenberg H, Thomsen PD (2005) Functional challenge affects aquaporin mRNA abundance in mouse blastocysts. Mol Reprod Dev 71:422–430. https://doi.org/10.1002/mrd.20306

    Article  CAS  PubMed  Google Scholar 

  47. Edashige K, Ohta S, Tanaka M, Kuwano T, Valdez DM Jr, Hara T, Jin B, Takahashi S, Seki S, Koshimoto C, Kasai M (2007) The role of aquaporin 3 in the movement of water and cryoprotectants in mouse morulae. Biol Reprod 77:365–375. https://doi.org/10.1095/biolreprod.106.059261

    Article  CAS  PubMed  Google Scholar 

  48. Taketsuru H, Kaneko T (2018) Tolerance to vitrification of rat embryos at various developmental stages. Cryobiology 84:1–3. https://doi.org/10.1016/j.cryobiol.2018.09.002

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by Kunming Medical University (No. CXTD202105).

Author information

Authors and Affiliations

Authors

Contributions

SZ, GY, and YY designed the study. WY, LL, LW, and DZ collected the data. SZ and GY performed the data analyses and wrote the manuscript. All authors approved the final manuscript.

Corresponding author

Correspondence to Shuhua Zhao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

This study was conducted according to the Declaration of Helsinki and approved by the Ethics Committee of the First Affiliated Hospital of Kunming Medical University, and no informed consent was required because the study was a retrospective study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, G., Yao, Y., Yang, W. et al. An all-37 °C thawing method improves the clinical outcomes of vitrified frozen-thawed embryo transfer: a retrospective study using a case–control matching analysis. Arch Gynecol Obstet 307, 1991–1999 (2023). https://doi.org/10.1007/s00404-023-07029-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-023-07029-1

Keywords

Navigation