Skip to main content

Advertisement

Log in

DNA methylation associated with polycystic ovary syndrome: a systematic review

  • Review
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

Polycystic ovary syndrome (PCOS) is an endocrine metabolic disease that affects women of reproductive age and is one of the main causes of anovulatory infertility. However, the cause of PCOS is yet fully understood, and genetic factors play an important role in its etiology. In this study, we reviewed the main genes involved in the etiology of PCOS and the influence of DNA methylation, aiming to answer the study´s guiding question: ‘What is the influence of DNA methylation on the main genes involved in PCOS?’.

Methods

We used the MEDLINE database, and inclusion criteria (primary and original articles, written in English, found through our entry terms) and exclusion criteria (literature reviews and articles that used animals to perform the experiments and that focused in other epigenetics mechanism without being DNA methylation) were applied.

Results

Twenty-three scientific articles, from a total of 43 articles read in full, were chosen for this study. Eighteen studies confirmed DNA methylation associated with PCOS.

Conclusion

The most relevant genes related to PCOS were INSR, LHCGR, and RAB5B, which may be epigenetically altered in DNA, with the first two genes hypomethylated and the last hypermethylated. The epigenetic changes presented in the genes related to PCOS or their promoters were only at the CpG sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data relevant to the review are included in the article or uploaded as supplementary information.

References

  1. Fauser BCJM, Tarlatzis BC, Rebar RW et al (2012) Consensus on women’s health aspects of polycystic ovary syndrome (PCOS): The Amsterdam ESHRE/ASRM-Sponsored 3rd PCOS Consensus Workshop Group. Fertil Steril 97(1):28-38.e25. https://doi.org/10.1016/j.fertnstert.2011.09.024

    Article  PubMed  Google Scholar 

  2. Pfieffer ML (2019) Polycystic ovary syndrome: diagnosis and management. Nurse Pract 44(3):30–35. https://doi.org/10.1097/01.NPR.0000553398.50729.c0

    Article  PubMed  Google Scholar 

  3. The Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group (2004) Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril 81(1):19–25. https://doi.org/10.1016/j.fertnstert.2003.10.004

    Article  Google Scholar 

  4. Wang J, Wu D, Guo H, Li M (2019) Hyperandrogenemia and insulin resistance: the chief culprit of polycystic ovary syndrome. Life Sci 236:116940. https://doi.org/10.1016/j.lfs.2019.116940

    Article  CAS  PubMed  Google Scholar 

  5. Ajmal N, Khan SZ, Shaikh R (2019) Polycystic ovary syndrome (PCOS) and genetic predisposition: a review article. Eur J Obstet Gynecol Reprod Biol X 3:100060. https://doi.org/10.1016/j.eurox.2019.100060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Haig D (2004) The (dual) origin of epigenetics. Cold Spring Harb Symp Quant Biol 69:67–70. https://doi.org/10.1101/sqb.2004.69.67

    Article  CAS  PubMed  Google Scholar 

  7. Vázquez-Martínez ER, Gómez-Viais YI, García-Gómez E, Reyes-Mayoral C, Reyes-Muñoz E, Camacho-Arroyo I, Cerbón M (2019) DNA methylation in the pathogenesis of polycystic ovary syndrome. Reproduction 158(1):R27–R40. https://doi.org/10.1530/rep-18-0449

    Article  CAS  PubMed  Google Scholar 

  8. Gibney ER, Nolan CM (2010) Epigenetics and gene expression. Heredity 105(1):4–13. https://doi.org/10.1038/hdy.2010.54

    Article  CAS  PubMed  Google Scholar 

  9. Jones PA (2012) Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat Rev Genet 13(7):484–492. https://doi.org/10.1038/nrg3230

    Article  CAS  PubMed  Google Scholar 

  10. Kim JK, Samaranayake M, Pradhan S (2009) Epigenetic mechanisms in mammals. Cell Mol Life Sci 66(4):596–612. https://doi.org/10.1007/s00018-008-8432-4

    Article  CAS  PubMed  Google Scholar 

  11. Lawrence M, Daujat S, Schneider R (2016) Lateral thinking: How histone modifications regulate gene expression. Trends Genet 32(1):42–56. https://doi.org/10.1016/j.tig.2015.10.007

    Article  CAS  PubMed  Google Scholar 

  12. Peschansky VJ, Wahlestedt C (2014) Non-coding RNAs as direct and indirect modulators of epigenetic regulation. Epigenetics 9(1):3–12. https://doi.org/10.4161/epi.27473

    Article  CAS  PubMed  Google Scholar 

  13. Xu J, Bao X, Peng Z, Wang L, Du L, Niu W, Sun Y (2016) Comprehensive analysis of genome-wide DNA methylation across human polycystic ovary syndrome ovary granulosa cell. Oncotarget 7(19):27899–27909. https://doi.org/10.18632/oncotarget.8544

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cui P, Ma T, Tamadon A et al (2018) Hypothalamic DNA methylation in rats with dihydrotestosterone-induced polycystic ovary syndrome: effects of low-frequency electro-acupuncture. Exp Physiol 103(12):1618–1632. https://doi.org/10.1113/EP087163

    Article  CAS  PubMed  Google Scholar 

  15. Kokosar M, Benrick A, Perfilyev A et al (2016) Epigenetic and transcriptional alterations in human adipose tissue of polycystic ovary syndrome. Sci Rep [Internet] 6:22883. https://doi.org/10.1038/srep22883

    Article  CAS  PubMed  Google Scholar 

  16. Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLOS Med 6(7):e1000097. https://doi.org/10.1371/journal.pmed.1000097

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wells G, Shea B, O’Connell D, Peterson J, Welch V, Losos M, Tugwell P (2021) The Newcastle–Ottawa Scale (NOS) for assessing the quality if nonrandomized studies in meta-analyses. https://www.ohri.ca//programs/clinical_epidemiology/oxford.asp

  18. Dasgupta S, Sirisha PVS, Neelaveni K, Anuradha K, Reddy AG, Thangaraj K, Reedy BM (2010) Androgen receptor cag repeat polymorphism and epigenetic influence among the south Indian women with polycystic ovary syndrome. PLoS ONE 5(8):e12401. https://doi.org/10.1371/journal.pone.0012401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Laisk T, Haller-Kikkatalo K, Laanpere M, Jakovlev U, Peters M, Karro H, Salumets A (2010) Androgen receptor epigenetic variations influence early follicular phase gonadotropin levels. Acta Obstet Gynecol Scand 89(12):1557–1563. https://doi.org/10.3109/00016349.2010.526182

    Article  CAS  PubMed  Google Scholar 

  20. Sang Q, Zhang S, Zou S et al (2013) Quantitative analysis of follistatin (FST) promoter methylation in peripheral blood of patients with polycystic ovary syndrome. Reprod Biomed Online 26(2):157–163. https://doi.org/10.1016/j.rbmo.2012.10.011

    Article  CAS  PubMed  Google Scholar 

  21. Saenz-de-Juano MD, Ivanova E, Romero S et al (2019) DNA methylation and mRNA expression of imprinted genes in blastocysts derived from an improved in vitro maturation method for oocytes from small antral follicles in polycystic ovary syndrome patients. Hum Reprod 34(9):1640–1649. https://doi.org/10.1093/humrep/dez121

    Article  CAS  PubMed  Google Scholar 

  22. Leung KL, Sanchita S, Pham CT et al (2020) Dynamic changes in chromatin accessibility, altered adipogenic gene expression, and total versus de novo fatty acid synthesis in subcutaneous adipose stem cells of normal-weight polycystic ovary syndrome (PCOS) women during adipogenesis: evidence of cellular programming. Clin Epigenetics 12(1):181. https://doi.org/10.1186/s13148-020-00970-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jones MR, Brower MA, Xu N, Cui J, Mengesha E, Chen YDI, Azziz R, Goodarzi MO (2015) Systems genetics reveals the functional context of PCOS loci and identifies genetic and molecular mechanisms of disease heterogeneity. PLOS Genet 11(8):e1005455. https://doi.org/10.1371/journal.pgen.1005455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yu YY, Sun CX, Liu YK, Li Y, Wang L, Zhang W (2015) Genome-wide screen of ovary-specific DNA methylation in polycystic ovary syndrome. Fertil Steril 104(1):145–53.e6. https://doi.org/10.1016/j.fertnstert.2015.04.005

    Article  CAS  PubMed  Google Scholar 

  25. Lambertini L, Saul SR, Copperman AB, Hammerstad SS, Yi Z, Zhang W, Tomer Y, Kase N (2017) Intrauterine reprogramming of the polycystic ovary syndrome: evidence from a pilot study of cord blood global methylation analysis. Front Endocrinol 8:352. https://doi.org/10.3389/fendo.2017.00352

    Article  Google Scholar 

  26. Nilsson E, Benrick A, Kokosar M et al (2018) Transcriptional and epigenetic changes influencing skeletal muscle metabolism in women with polycystic ovary syndrome. J Clin Endocrinol Metab 03(12):4465–4477. https://doi.org/10.1210/jc.2018-00935

    Article  Google Scholar 

  27. Jacobsen VM, Li S, Wang A, Zhu D, Liu M, Thomassen M, Kruse T, Tan Q (2019) Epigenetic association analysis of clinical sub-phenotypes in patients with polycystic ovary syndrome (PCOS). Gynecol Endocrinol 35(8):691–694. https://doi.org/10.1080/09513590.2019.1576617

    Article  CAS  PubMed  Google Scholar 

  28. Sagvekar P, Kumar P, Mangoli V, Desai S, Mukherjee S (2019) DNA methylome profiling of granulosa cells reveals altered methylation in genes regulating vital ovarian functions in polycystic ovary syndrome. Clin Epigenet 11(1):61. https://doi.org/10.1186/s13148-019-0657-6

    Article  CAS  Google Scholar 

  29. Echiburú B, Milagro F, Crisosto N et al (2020) DNA methylation in promoter regions of genes involved in the reproductive and metabolic function of children born to women with PCOS. Epigenetics 15(11):1178–1194. https://doi.org/10.1080/15592294.2020.1754674

    Article  PubMed  PubMed Central  Google Scholar 

  30. Makrinou E, Drong AW, Christopoulos G et al (2020) Genome-wide methylation profiling in granulosa lutein cells of women with polycystic ovary syndrome (PCOS). Mol Cell Endocrinol 500:110611. https://doi.org/10.1016/j.mce.2019.110611

    Article  CAS  PubMed  Google Scholar 

  31. Mao Z, Li T, Zhao H, Wang X, Kang Y, Kang Y (2021) Methylome and transcriptome profiling revealed epigenetic silencing of LPCAT1 and PCYT1A associated with lipidome alterations in polycystic ovary syndrome. J Cell Physiol 236(9):6362–6375. https://doi.org/10.1002/jcp.30309

    Article  CAS  PubMed  Google Scholar 

  32. Wang P, Zhao H, Li T et al (2014) Hypomethylation of the LH/choriogonadotropin receptor promoter region is a potential mechanism underlying susceptibility to polycystic ovary syndrome. Endocrinology 155(4):1445–1452. https://doi.org/10.1210/en.2013-1764

    Article  CAS  PubMed  Google Scholar 

  33. Pan JX, Tan YJ, Wang FF et al (2018) Aberrant expression and DNA methylation of lipid metabolism genes in PCOS: a new insight into its pathogenesis. Clin Epigenet 10(1):6. https://doi.org/10.1186/s13148-018-0442-y

    Article  CAS  Google Scholar 

  34. Pruksananonda K, Wasinarom A, Sereepapong W, Sirayapiwat P, Rattanatanyong P, Mutirangura A (2016) Epigenetic modification of long interspersed elements-1 in cumulus cells of mature and immature oocytes from patients with polycystic ovary syndrome. Clin Exp Reprod Med 43(2):82–89. https://doi.org/10.5653/cerm.2016.43.282

  35. Hiam D, Simar D, Laker R, Altıntaş A, Gibson-Helm M, Fletcher E, Moreno-Asso A, Trewin AJ, Barres R, Stepto NK (2019) Epigenetic reprogramming of immune cells in women with PCOS impact genes controlling reproductive function. J Clin Endocrinol Metab 104(12):6155-6170. https://doi.org/10.1210/jc.2019-01015

  36. Wang XX, Wei JZ, Jiao J, Jiang SY, Yu DH, Li D (2014) Genome-wide DNA methylation and gene expression patterns provide insight into polycystic ovary syndrome development. Oncotarget 5(16):6603–6610. https://doi.org/10.18632/oncotarget.2224

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhao H, Zhao Y, Ren Y, Li M, Li T, Li R, Yu Y, Qiao J (2017) Epigenetic regulation of an adverse metabolic phenotype in polycystic ovary syndrome: the impact of the leukocyte methylation of PPARGC1A promoter. Fertil Steril 107(2):467-474.e5. https://doi.org/10.1016/j.fertnstert.2016.10.039

    Article  CAS  PubMed  Google Scholar 

  38. Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92(6):829–839. https://doi.org/10.1016/S0092-8674(00)81410-5

    Article  CAS  PubMed  Google Scholar 

  39. Bachelot A, Monget P, Imbert-Bolloré P, Coshigano K, Kopchick JJ, Kelly PA, Binart N (2002) Growth hormone is required for ovarian follicular growth. Endocrinology 143(10):4104–4112. https://doi.org/10.1210/en.2002-220087

    Article  CAS  PubMed  Google Scholar 

  40. Nakao K, Kishi H, Imai F, Suwa H, Hirakawa T, Minegishi T (2015) TNF-α suppressed FSH-induced LH receptor expression through transcriptional regulation in rat granulosa cells. Endocrinology 156(9):3192–3202. https://doi.org/10.1210/EN.2015-1238

    Article  CAS  PubMed  Google Scholar 

  41. Jiao J, Sagnelli M, Shi B et al (2019) Genetic and epigenetic characteristics in ovarian tissues from polycystic ovary syndrome patients with irregular menstruation resemble those of ovarian cancer. BMC Endocr Disord 19(1):30. https://doi.org/10.1186/s12902-019-0356-5

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study writing and data management. The study conception, design, and data collection were performed by AGM and LRF. The first draft of the manuscript was written by AGM and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. AGM: data collection, management, and analysis, manuscript writing. MMS: data management and analysis; manuscript editing. LRF: data collection, management, and analysis, manuscript writing/editing.

Corresponding author

Correspondence to Luciana Rocha Faustino.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest with respect to the work reported in this article. The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 164 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miranda, A.G., Seneda, M.M. & Faustino, L.R. DNA methylation associated with polycystic ovary syndrome: a systematic review. Arch Gynecol Obstet 309, 373–383 (2024). https://doi.org/10.1007/s00404-023-07025-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-023-07025-5

Keywords

Navigation