Skip to main content
Log in

Accuracy of the sonographic determination of estimated fetal weight in anhydramnios

  • Maternal-Fetal Medicine
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Objective

To determine whether the presence of anhydramnios significantly influences the sonographic estimated fetal weight (EFW) compared to a matched cohort with normal amniotic fluid volume.

Methods

The study sample of this retrospective case–control study consisted of 114 pregnant women who presented to a Tertiary Perinatal Clinic between 2015 and 2020. 57 of them presented with an anhydramnios and a matched cohort of 57 women with normal amniotic fluid volume. At time of admission, gestational age varied between 22 + 4 and 42 + 6 weeks of pregnancy. All women underwent detailed ultrasound assessment for EFW and amniotic fluid index. To determine EFW Hadlock’s estimation formula I was used which is based on measurements of biparietal diameter (BPD), head circumference (HC), abdominal circumference (AC) and femur length (FL). The EFW was compared with the weight at delivery. The maximum time interval between measurement and delivery was 5 days.

Results

There was neither a significant difference between the case and control group with regard to gestational age at ultrasound in days (median 249 days and 246 days, p = 0.97), nor to gestational age at birth (median 249 days and 247 days, p = 0.98). Concerning the newborns parameters, the body length at birth was not significantly different between the case and control group in centimeters (cm) (median 47 cm and 47 cm, p = 0.79). EFW in gram (g) was lower than birth weight in both groups and did not differ significantly between case and control group (estimated weight median 2247 g and 2421 g, p = 0.46; birth weight median 2440 g and 2475 g, p = 0.47). The difference between EFW and birth weight in percent (%) did not differ between the case and control group (median − 3.9% and − 5.6%, p = 0.70). The maternal parameters showed that the patients in the case group were younger (median 31 years and 38 years p = 0.20) and had a significantly higher body mass index (BMI) (median 27.3 kg/m2 vs 22.0 kg/m2, < 0.001) compared to the control group.

Conclusion

Our study shows for the first time that EFW in women with anhydramnios can be determined sonographically just as accurately as in a matched cohort with normal amniotic fluid volume. A reliable estimation of fetal weight is crucial for optimal assessment of the newborns prognosis and counseling of the parents especially when advising women in the early weeks of pregnancy at the limit of viability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Richtlinien des Gemeinsamen Bundesausschusses über die ärztliche Betreuung während der Schwangerschaft und nach der Entbindung („Mutterschafts-Richtlinien“) in der Fassung vom 10. Dezember 1985 (veröffentlicht im Bundesanzeiger Nr. 60 a vom 27. März 1986) zuletzt geändert am 16. September 2021 veröffentlicht im Bundesanzeiger AT 26.11.2021 B4 in Kraft getreten am 1. Januar 2022

  2. Beta J, Khan N, Khalil A, Fiolna M, Ramadan G, Akolekar R (2019) Maternal and neonatal complications of fetal macrosomia: systematic review and meta-analysis. Ultrasound Obstet Gynecol 54(3):308–318

    Article  CAS  PubMed  Google Scholar 

  3. Glass HC, Costarino AT, Stayer SA, Brett CM, Cladis F, Davis PJ (2015) Outcomes for extremely premature infants. Anesth Analg 120(6):1337–1351

    Article  PubMed  PubMed Central  Google Scholar 

  4. Shah PS, Ye XY, Synnes A, Rouvinez-Bouali N, Yee W, Lee SK, Network TCN (2011) Prediction of survival without morbidity for infants born at under 33 weeks gestational age: a user-friendly graphical tool. Arch Dis Child Fetal Neonatal 97(2):F110–F115

    Article  Google Scholar 

  5. Valcamonico A, Accorsi P, Sanzeni C, Martelli P, La Boria P, Cavazza A, Frusca T (2007) Mid- and long-term outcome of extremely low birth weight (ELBW) infants: an analysis of prognostic factors. J Matern Fetal Neonatal Med 20(6):465–471

    Article  CAS  PubMed  Google Scholar 

  6. Faschingbauer F, Raabe E, Heimrich J, Faschingbauer C, Schmid M, Mayr A, Schild RL, Beckmann MW, Kehl S (2016) Accuracy of sonographic fetal weight estimation: influence of the scan-to-delivery interval in combination with the applied weight estimation formula. Arch Gynecol Obstet 294(3):487–493

    Article  CAS  PubMed  Google Scholar 

  7. Hoopmann M, Kagan KO, Sauter A, Abele H, Wagner P (2016) Comparison of errors of 35 weight estimation formulae in a standard collective. Geburtshilfe Frauenheilkd 76(11):1172–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hadlock FP, Harrist RB, Sharman RS, Deter RL, Park SK (1985) Estimation of fetal weight with the use of head, body, and femur measurements—a prospective study. Am J Obstet Gynecol 151(3):333–337

    Article  CAS  PubMed  Google Scholar 

  9. Sekar R, Khatun M, Barrett HL, Duncombe G (2016) A prospective pilot study in assessing the accuracy of ultrasound estimated fetal weight prior to delivery. Aust N Z J Obstet Gynaecol 56(1):49–53

    Article  PubMed  Google Scholar 

  10. Chauhan SP, Hendrix NW, Magann EF, Morrison JC, Scardo JA, Berghella V (2005) A review of sonographic estimate of fetal weight: vagaries of accuracy. J Matern Fetal Neonatal Med 18(4):211–220

    Article  PubMed  Google Scholar 

  11. Huber C, Zdanowicz JA, Mueller M, Surbek D (2014) Factors influencing the accuracy of fetal weight estimation with a focus on preterm birth at the limit of viability: a systematic literature review. Fetal Diagn Ther 36(1):1–8

    Article  PubMed  Google Scholar 

  12. Ben-Haroush A, Yogev Y, Bar J, Mashiach R, Kaplan B, Hod M, Meizner I (2004) Accuracy of sonographically estimated fetal weight in 840 women with different pregnancy complications prior to induction of labor. Ultrasound Obstet Gynecol 23(2):172–176

    Article  CAS  PubMed  Google Scholar 

  13. Cohen JM, Hutcheon JA, Kramer MS, Joseph KS, Abenhaim H, Platt RW (2010) Influence of ultrasound-to-delivery interval and maternal-fetal characteristics on validity of estimated fetal weight. Ultrasound Obstet Gynecol 35(4):434–441

    Article  CAS  PubMed  Google Scholar 

  14. Esin S, Hayran M, Tohma YA, Guden M, Alay I, Esinler D, Yalvac S, Kandemir O (2017) Estimation of fetal weight by ultrasonography after preterm premature rupture of membranes: comparison of different formulas. J Perinat Med 45(2):253–266

    Article  PubMed  Google Scholar 

  15. Janas P, Radoń-Pokracka M, Nowak M, Staroń A, Wilczyńska G, Brzozowska M, Huras H (2019) Effect of oligohydramnios on the accuracy of sonographic foetal weight estimation in at term pregnancies. Taiwan J Obstet Gynecol 58(2):278–281

    Article  PubMed  Google Scholar 

  16. Duncan JR, Schenone C, Dorset KM, Goedecke PJ, Tobiasz AM, Meyer NL, Schenone MH (2020) Estimated fetal weight accuracy in pregnancies with preterm prelabor rupture of membranes by the Hadlock method. J Matern Fetal Neonatal Med 22:1–5

    Google Scholar 

  17. Warshafsky C, Ronzoni S, Quaglietta P, Weiner E, Zaltz A, Barrett J, Melamed N, Aviram A (2021) Comparison of sonographic fetal weight estimation formulas in patients with preterm premature rupture of membranes. BMC Pregnancy Childbirth 21(1):149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schlembach D, Berger R, Kainer F (2020) Geburtshilfe – Differenzialdiagnostik und Differenzialtherapie. Urban & Fischer/Elsevier, München

    Google Scholar 

  19. Committee on Practice Bulletins - Obstetrics and the American Institute of Ultrasound in Medicine (2016) Practice Bulletin No. 175. Ultrasound in Pregnancy. Obstet Gynecol 128(6):e241–e256

    Article  Google Scholar 

  20. Abdelazim IA (2014) Insulin-like growth factor binding protein-1 (Actim PROM test) for detection of premature rupture of fetal membranes. J Obstet Gynaecol Res 40(4):961–967

    Article  CAS  PubMed  Google Scholar 

  21. Abdelazim IA, Makhlouf HH (2012) Placental alpha microglobulin-1 (AmniSure(®) test) for detection of premature rupture of fetal membranes. Arch Gynecol Obstet 285(4):985–989

    Article  PubMed  Google Scholar 

  22. Owen J, Albert PS, Buck Louis GM, Fuchs KM, Grobman WA, Kim S, D’Alton ME, Wapner R, Wing DA, Grantz KL (2019) A contemporary amniotic fluid volume chart for the United States: the NICHD fetal growth studies-singletons. Am J Obstet Gynecol 221(1):67.e1-67.e12

    Article  PubMed  Google Scholar 

  23. Voigt M, Fusch C, Olbertz D, Hartmann K, Rochow N, Renken C, Schneider KTM (2006) Analysis of the neonatal collective in the federal Republic of Germany 12th report: presentation of detailed percentiles for the body measurement of newborns. Geburtshilfe Frauenheilkd 66(10):956–970

    Article  Google Scholar 

  24. Kurmanavicius J, Burkhardt T, Wisser J, Huch R (2004) Ultrasonographic fetal weight estimation: accuracy of formulas and accuracy of examiners by birth weight from 500 to 5000 g. J Perinat Med 32(2):155–161

    Article  PubMed  Google Scholar 

  25. Smith LK, Blondel B, Van Reempts P, Draper ES, Manktelow BN, Barros H, Cuttini M, Zeitlin J (2017) EPICE Research Group. Variability in the management and outcomes of extremely preterm births across five European countries: a population-based cohort study. Arch Dis Child Fetal Neonatal Ed 102(5):F400–F408

    Article  PubMed  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript. The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Contributions

MR: manuscript writing, KR: data collection, BS: data analysis, AS: manuscript editing, AK: project development.

Corresponding author

Correspondence to Maximilian Rauh.

Ethics declarations

Conflict of interest

The authors declare to have no conflict of interest.

Ethical approval

The study was approved by the ethics committee of the University of Regensburg (no. 21-2527-104).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rauh, M., Rasim, K., Schmidt, B. et al. Accuracy of the sonographic determination of estimated fetal weight in anhydramnios. Arch Gynecol Obstet 308, 1151–1158 (2023). https://doi.org/10.1007/s00404-022-06762-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-022-06762-3

Keywords

Navigation