Skip to main content

Advertisement

Log in

DIA-based proteomics analysis of serum-derived exosomal proteins as potential candidate biomarkers for intrahepatic cholestasis in pregnancy

  • Maternal-Fetal Medicine
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Background

Data-independent acquisition (DIA) is one of the most powerful and reproducible proteomic technologies for large-scale digital qualitative and quantitative research. The aim of this study was to use proteomic methodologies for the identification of biomarkers that are over or underexpressed in women with intrahepatic cholestasis of pregnancy (ICP) compared with controls and discover a potential biomarker panel for ICP detection.

Methods

The participants included 11 ICP patients and 11 healthy pregnant women as controls. The clinical characteristic data and the laboratory biochemical data were collected at the time of recruitment. Then, a data-independent acquisition (DIA)-based proteomics approach was used to identify differentially expressed proteins (DEPs) in serum exosomes between ICP patients and controls. Finally, bioinformatics analysis was used to identify the relevant processes in which these DEPs were involved.

Results

The proteomics results showed that there were 162 DEPs in serum exosomes between pregnant women with ICP and healthy pregnant women, of which 106 were upregulated and 56 were downregulated in ICP. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the identified proteins were functionally related to specific cell processes including apoptosis, lipid metabolism, immune response and cell proliferation, and metabolic disorders, suggesting that these may be primary causative factors in ICP pathogenesis. Meanwhile, complement and coagulation cascades may be closely related to the development of ICP. Receiver operating characteristic curve (ROC) analysis showed that the area under the curve values of Elongation factor 1-alpha 1, Beta-2-glycoprotein I, Zinc finger protein 238, CP protein and Ficolin-3 were all approximately 0.9, indicating the promising diagnostic value of these proteins.

Conclusions

This preliminary work provides a better understanding of the proteomic alterations in the serum exosomes of pregnant women with ICP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Rook M, Vargas J, Caughey A et al (2012) Fetal outcomes in pregnancies complicated by intrahepatic cholestasis of pregnancy in a Northern California cohort. PLoS ONE 7(3):e28343. https://doi.org/10.1371/journal.pone.0028343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ozkan S, Ceylan Y, Ozkan OV et al (2015) Review of a challenging clinical issue: intrahepatic cholestasis of pregnancy. World J Gastroenterol 21(23):7134–7141. https://doi.org/10.3748/wjg.v21.i23.7134

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jurk SM, Kremer AE, Schleussner E (2021) Intrahepatic Cholestasis of Pregnancy. Geburtsh Frauenheilk 81(08):940–947. https://doi.org/10.1055/a-1522-5178

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dixon PH, Williamson C (2016) The pathophysiology of intrahepatic cholestasis of pregnancy. Clin Res Hepatol Gastroenterol 40(2):141–153. https://doi.org/10.1016/j.clinre.2015.12.008

    Article  CAS  PubMed  Google Scholar 

  5. Smith DD, Rood KM (2020) Intrahepatic cholestasis of pregnancy. Clin Obstet Gynecol 63(1):134–151. https://doi.org/10.1097/GRF.0000000000000495

    Article  PubMed  Google Scholar 

  6. Floreani A, Gervasi MT (2016) New insights on intrahepatic cholestasis of pregnancy. Clin Liver Dis 20(1):177–189. https://doi.org/10.1016/j.cld.2015.08.010

    Article  PubMed  Google Scholar 

  7. Ma L, Zhang XQ, Zhou DX et al (2016) Feasibility of urinary microRNA profiling detection in intrahepatic cholestasis of pregnancy and its potential as a non-invasive biomarker. Sci Rep 6:31535. https://doi.org/10.1038/srep31535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Palmer KR, Xiaohua L, Mol BW (2019) Management of intrahepatic cholestasis in pregnancy. Lancet 393(10174):853–854. https://doi.org/10.1016/S0140-6736(18)32323-7

    Article  PubMed  Google Scholar 

  9. Hagenbeck C, Hamza A, Kehl S et al (2021) Management of Intrahepatic Cholestasis of Pregnancy: Recommendations of the Working Group on Obstetrics and Prenatal Medicine—Section on Maternal Disorders. Geburtshilfe Frauenheilkd 81(8):922–939. https://doi.org/10.1055/a-1386-3912

    Article  PubMed  PubMed Central  Google Scholar 

  10. Heikkinen J, Maentausta O, Ylostalo P et al (1981) Changes in serum bile acid concentrations during normal pregnancy, in patients with intrahepatic cholestasis of pregnancy and in pregnant women with itching. Br J Obstet Gynaecol 88(3):240–245

    Article  CAS  PubMed  Google Scholar 

  11. Lee RH, Mara G, Metz TD et al (2011) (2021) society for maternal-fetal medicine consult series #53: intrahepatic cholestasis of pregnancy: replaces consult #13. Am J Obstet Gynecol 224(2):B2–B9. https://doi.org/10.1016/j.ajog.2020.11.002

    Article  CAS  Google Scholar 

  12. Martinefski M, Contin M, Lucangioli S et al (2012) In search of an accurate evaluation of intrahepatic cholestasis of pregnancy. Scientifica (Cairo). https://doi.org/10.6064/2012/496489

    Article  PubMed  Google Scholar 

  13. Adams A, Jacobs K, Vogel RI et al (2015) Bile acid determination after standardized glucose load in pregnant women. AJP Rep 5(2):e168–e171. https://doi.org/10.1055/s-0035-1555128

    Article  PubMed  PubMed Central  Google Scholar 

  14. Nedaeinia R, Manian M, Jazayeri MH et al (2017) Circulating exosomes and exosomal microRNAs as biomarkers in gastrointestinal cancer. Cancer Gene Ther 24(2):48–56. https://doi.org/10.1038/cgt.2016.77

    Article  CAS  PubMed  Google Scholar 

  15. Rm H, Bayraktar E, HG K et al (2017) Exosomes: from garbage bins to promising therapeutic targets. Int J Mol Sci. https://doi.org/10.3390/ijms18030538

    Article  Google Scholar 

  16. Kalluri R, Lebleu VS (2020) The biology, function, and biomedical applications of exosomes. Science. https://doi.org/10.1126/science.aau6977

    Article  PubMed  PubMed Central  Google Scholar 

  17. Melo SA, Luecke LB, Kahlert C et al (2015) Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 523(7559):177–182. https://doi.org/10.1038/nature14581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tan KH, Tan SS, Sze SK et al (2014) Plasma biomarker discovery in preeclampsia using a novel differential isolation technology for circulating extracellular vesicles. Am J Obstet Gynecol 211(4):380–381. https://doi.org/10.1016/j.ajog.2014.03.038

    Article  CAS  Google Scholar 

  19. Yu Y, Tan P, Zhuang Z et al (2021) DIA proteomics analysis through serum profiles reveals the significant proteins as candidate biomarkers in women with PCOS. Bmc Med Genomics 14(1):125. https://doi.org/10.1186/s12920-021-00962-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhao L, Shi J, Chang L et al (2021) Serum-derived exosomal proteins as potential candidate biomarkers for hepatocellular carcinoma. ACS Omega 6(1):827–835. https://doi.org/10.1021/acsomega.0c05408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang XX, Sun C, Wang L et al (2019) New insight into isolation, identification techniques and medical applications of exosomes. J Control Release 308:119–129. https://doi.org/10.1016/j.jconrel.2019.07.021

    Article  CAS  PubMed  Google Scholar 

  22. Wei H, Chen J, Wang S et al (2019) A nanodrug consisting of doxorubicin and exosome derived from mesenchymal stem cells for osteosarcoma treatment in vitro. Int J Nanomedicine 14:8603–8610. https://doi.org/10.2147/IJN.S218988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Luo Y, Li ZM, Li LP et al (2021) ITRAQ-based proteomics analysis of tanshinone IIA on human ectopic endometrial stromal cells of adenomyosis. Arch Gynecol Obstet 303(6):1501–1511. https://doi.org/10.1007/s00404-020-05936-1

    Article  CAS  PubMed  Google Scholar 

  24. Worst TS, von Hardenberg J, Gross JC et al (2017) Database-augmented mass spectrometry analysis of exosomes identifies claudin 3 as a putative prostate cancer biomarker. Mol Cell Proteomics 16(6):998–1008. https://doi.org/10.1074/mcp.M117.068577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Menzyk T, Bator M, Derra A et al (2018) The role of metabolic disorders in the pathogenesis of intrahepatic cholestasis of pregnancy. Clin Exp Hepatol 4(4):217–223. https://doi.org/10.5114/ceh.2018.80122

    Article  PubMed  PubMed Central  Google Scholar 

  26. Martineau M, Raker C, Powrie R et al (2014) Intrahepatic cholestasis of pregnancy is associated with an increased risk of gestational diabetes. Eur J Obstet Gynecol Reprod Biol 176:80–85. https://doi.org/10.1016/j.ejogrb.2013.12.037

    Article  PubMed  Google Scholar 

  27. Wei J, Wang H, Yang X et al (2010) Altered gene profile of placenta from women with intrahepatic cholestasis of pregnancy. Arch Gynecol Obstet 281(5):801–810. https://doi.org/10.1007/s00404-009-1156-3

    Article  CAS  PubMed  Google Scholar 

  28. Duman M, Vaquie A, Nocera G et al (2020) EEF1A1 deacetylation enables transcriptional activation of remyelination. Nat Commun 11(1):3420. https://doi.org/10.1038/s41467-020-17243-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sharma S, Tammela J, Wang X et al (2007) Characterization of a putative ovarian oncogene, elongation factor 1alpha, isolated by panning a synthetic phage display single-chain variable fragment library with cultured human ovarian cancer cells. Clin Cancer Res 13(19):5889–5896. https://doi.org/10.1158/1078-0432.CCR-07-0703

    Article  CAS  PubMed  Google Scholar 

  30. Shen Y, Li Y, Ye F et al (2010) Identification of suitable reference genes for measurement of gene expression in human cervical tissues. Anal Biochem 405(2):224–229. https://doi.org/10.1016/j.ab.2010.06.029

    Article  CAS  PubMed  Google Scholar 

  31. Joung EK, Kim J, Yoon N et al (2019) Expression of EEF1A1 is associated with prognosis of patients with colon adenocarcinoma. J Clin Med. https://doi.org/10.3390/jcm8111903

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hetherington AM, Sawyez CG, Sutherland BG et al (2016) Treatment with didemnin B, an elongation factor 1A inhibitor, improves hepatic lipotoxicity in obese mice. Physiol Rep 4(17):e12963

    Article  PubMed  PubMed Central  Google Scholar 

  33. Agar C, de Groot PG, Levels JH et al (2009) Beta2-glycoprotein I is incorrectly named apolipoprotein H. J Thromb Haemost 7(1):235–236. https://doi.org/10.1111/j.1538-7836.2008.03223.x

    Article  CAS  PubMed  Google Scholar 

  34. Xie W, Qiao X, Shang L et al (2018) Knockdown of ZNF233 suppresses hepatocellular carcinoma cell proliferation and tumorigenesis. Gene 679:179–185. https://doi.org/10.1016/j.gene.2018.08.070

    Article  CAS  PubMed  Google Scholar 

  35. Vasilyev VB (2019) Looking for a partner: ceruloplasmin in protein-protein interactions. Biometals 32(2):195–210. https://doi.org/10.1007/s10534-019-00189-1

    Article  CAS  PubMed  Google Scholar 

  36. Corradini E, Buzzetti E, Dongiovanni P et al (2021) Ceruloplasmin gene variants are associated with hyperferritinemia and increased liver iron in patients with NAFLD. J Hepatol 75(3):506–513. https://doi.org/10.1016/j.jhep.2021.03.014

    Article  CAS  PubMed  Google Scholar 

  37. Hein E, Honore C, Skjoedt MO et al (2010) Functional analysis of Ficolin-3 mediated complement activation. PLoS ONE 5(11):e15443. https://doi.org/10.1371/journal.pone.0015443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jalal PJ, King BJ, Saeed A et al (2019) Elevated serum activity of MBL and ficolin-2 as biomarkers for progression to hepatocellular carcinoma in chronic HCV infection. Virology 530:99–106. https://doi.org/10.1016/j.virol.2019.02.002

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the Science and Technology Project of Jiangxi Province (grant nos. 20212BAB216065 and 20212BAG70006).

Author information

Authors and Affiliations

Authors

Contributions

NLJ manuscript draft and interpretation. XSM experiments perform. ZJS oversaw the study design. LY data analysis. ZY and LXX text revision. CHY and LXZ samples and clinical data collect. ZXM and LH design, text revision and final approval.

Corresponding authors

Correspondence to Xiaoming Zeng or Hua Lai.

Ethics declarations

Conflict of interest

None of the authors declare a conflict of interest of any kind.

Ethical statement

This study was approved by the Ethics Committee of Jiangxi Provincial Maternal and Child Health Hospital (registration number: EC-KT-202204 and EC-KT-202206, registered on January 5, 2022).

Informed consent

Informed consent was obtained from patients.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, L., Xin, S., Zheng, J. et al. DIA-based proteomics analysis of serum-derived exosomal proteins as potential candidate biomarkers for intrahepatic cholestasis in pregnancy. Arch Gynecol Obstet 308, 79–89 (2023). https://doi.org/10.1007/s00404-022-06703-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-022-06703-0

Keywords

Navigation