Skip to main content

Advertisement

Log in

Placental diabesity: placental VEGF and CD31 expression according to pregestational BMI and gestational weight gain in women with gestational diabetes

  • Maternal-Fetal Medicine
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study is to investigate the placental expression of VEGF and CD31 in pregnancies complicated by gestational diabetes (GDM) and the influence of pregestational BMI and gestational weight gain (GWG) on this expression.

Methods

We prospectively enrolled pregnant women with diagnosis of GDM and healthy controls who delivered in our Center between December 2016 and May 2017. Patients were grouped according to the presence of GDM and we compared pregnancy characteristics, placental VEGF and CD31 expression between the cases and controls. Immunochemistry analysis was performed to assess biomarkers positivity. Positivity of biomarkers was assessed in a dichotomic fashion with positivity set at 5% for VEGF and 1% for CD31.

Results

39 patients matched inclusion criteria, 29 (74.3%) women with GDM and 10 (25.7%) healthy controls. Immunochemistry analysis showed that VEGF was more expressed in placentas from women with GDM compared to controls (21/29, 72.4% vs 2/10, 20%; p = 0.007), and CD31 was more expressed in placentas from women with GDM compared to controls (6/29, 20.7% vs 0/10, 0%; risk difference 0.2). VEGF positivity was associated with the presence of GDM (aOR 22.02, 95% CI 1.13–428.08, p = 0.04), pregestational BMI (aOR 1.53, 1.00–2.34, p = 0.05) and GWG (aOR 1.47, 95% CI 1.03–2.11, p = 0.03). CD31 positivity was associated with the pregestational BMI (aOR 1.47, 95% CI 1.00–2.17, p = 0.05) and with the gestational weight gain (aOR 1.32, 95% CI 1.01–1.72, p = 0.04).

Conclusion

Pregnancies complicated by GDM are characterized by increased placental expression of VEGF and CD31, and the expression of these markers is also independently associated to maternal increased pregestational BMI and GWG, defining the concept of “placental diabesity”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. International Diabetes Federation (2013) IDF Atlas, 6th edn. International Diabetes Federation, Brussels

    Google Scholar 

  2. Hod M, Kapur A, Sacks DA, Hadar E, Agarwal M, Di Renzo GC, Cabero Roura L, McIntyre HD, Morris JL, Divakar H (2015) The International Federation of Gynecology and Obstetrics (FIGO) Initiative on gestational diabetes mellitus: a pragmatic guide for diagnosis, management, and care. Int J Gynaecol Obstet 131(Suppl 3):S173-211. https://doi.org/10.1016/S0020-7292(15)30033-3 (PMID: 26433807)

    Article  PubMed  Google Scholar 

  3. Dsouza R, Horyn I, Pavalagantharajah S, Zaffar N, Jacob CE (2019) Maternal body mass index and pregnancy outcomes: a systematic review and metaanalysis. Am J Obstet Gynecol MFM 1(4):100041. https://doi.org/10.1016/j.ajogmf.2019.100041 (Epub 2019 Aug 30. PMID: 33345836)

    Article  PubMed  Google Scholar 

  4. Bellos I, Fitrou G, Pergialiotis V, Perrea DN, Daskalakis G (2019) Serum levels of adipokines in gestational diabetes: a systematic review. J Endocrinol Invest 42(6):621–631. https://doi.org/10.1007/s40618-018-0973-2 (Epub 2018 Nov 3. PMID: 30392100)

    Article  CAS  PubMed  Google Scholar 

  5. Champion ML, Harper LM (2020) Gestational weight gain: update on outcomes and interventions. Curr Diab Rep 20(3):11. https://doi.org/10.1007/s11892-020-1296-1

    Article  PubMed  Google Scholar 

  6. Licht P, Russu V, Lehmeyer S, Wissentheit T, Siebzehnrübl E, Wildt L (2003) Cycle dependency of intrauterine vascular endothelial growth factor levels is correlated with decidualization and corpus luteum function. Fertil Steril 80(5):1228–1233. https://doi.org/10.1016/s0015-0282(03)02165-4 (PMID: 14607580)

    Article  PubMed  Google Scholar 

  7. Goodman C, Jeyendran RS, Coulam CB (2008) Vascular endothelial growth factor gene polymorphism and implantation failure. Reprod Biomed Online 16(5):720–723. https://doi.org/10.1016/s1472-6483(10)60487-7 (PMID: 18492378)

    Article  CAS  PubMed  Google Scholar 

  8. Zeng H, Hu L, Xie H et al (2021) Polymorphisms of vascular endothelial growth factor and recurrent implantation failure: a systematic review and meta-analysis. Arch Gynecol Obstet 304:297–307. https://doi.org/10.1007/s00404-021-06072-0

    Article  CAS  PubMed  Google Scholar 

  9. Augustine G, Pulikkathodi M, Renjith S, Jithesh TK (2016) A study of placental histological changes in gestational diabetes mellitus on account of fetal hypoxia. Int J Med Sci Public Heal 5:2457. https://doi.org/10.5455/ijmsph.2016.29042016494

    Article  Google Scholar 

  10. Madhuri K, Jyothi I (2017) A study on placental morphology in gesatational diabetes. J Evid Based Med Healthc 4:71–75. https://doi.org/10.18410/jebmh/2017/14

    Article  Google Scholar 

  11. Mitanchez D, Yzydorczyk C, Siddeek B et al (2015) The offspring of the diabetic mother—short- and long-term implications. Best Pract Res Clin Obstet Gynaecol 29:256–269

    Article  CAS  PubMed  Google Scholar 

  12. Magee TR, Ross MG, Wedekind L, Desai M, Kjos S, Belkacemi L (2014) Gestational diabetes mellitus alters apoptotic and inflammatory gene expression of trophobasts from human term placenta. J Diabetes Complications 28(4):448–459. https://doi.org/10.1016/j.jdiacomp.2014.03.010 (Epub 2014 Mar 24. PMID: 24768206; PMCID: PMC4166519)

    Article  PubMed  PubMed Central  Google Scholar 

  13. Li HP, Chen X, Li MQ (2013) Gestational diabetes induces chronic hypoxia stress and excessive inflammatory response in murine placenta. Int J Clin Exp Pathol 6(4):650–659 (Epub 2013 Mar 15. PMID: 23573311; PMCID: PMC3606854)

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Woodfin A, Voisin MB, Nourshargh S (2007) PECAM-1: a multi-functional molecule in inflammation and vascular biology. Arterioscler Thromb Vasc Biol 27(12):2514–2523. https://doi.org/10.1161/ATVBAHA.107.151456 (Epub 2007 Sep 13. PMID: 17872453)

    Article  CAS  PubMed  Google Scholar 

  15. Meng Q, Shao L, Luo X, Mu Y, Xu W, Gao L, Xu H, Cui Y (2016) Expressions of VEGF-A and VEGFR-2 in placentae from GDM pregnancies. Reprod Biol Endocrinol 14(1):61. https://doi.org/10.1186/s12958-016-0191-8 (PMID: 27645229; PMCID: PMC5029036)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Troncoso F, Acurio J, Herlitz K, Aguayo C, Bertoglia P, Guzman-Gutierrez E, Loyola M, Gonzalez M, Rezgaoui M, Desoye G, Escudero C (2017) Gestational diabetes mellitus is associated with increased pro-migratory activation of vascular endothelial growth factor receptor 2 and reduced expression of vascular endothelial growth factor receptor 1. PLoS ONE 12(8):e0182509. https://doi.org/10.1371/journal.pone.0182509 (PMID: 28817576; PMCID: PMC5560693)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhou J, Ni X, Huang X, Yao J, He Q, Wang K, Duan T (2016) Potential role of hyperglycemia in fetoplacental endothelial dysfunction in gestational Diabetes mellitus. Cell Physiol Biochem 39(4):1317–1328. https://doi.org/10.1159/000447836 (Epub 2016 Sep 8. PMID: 27606810)

    Article  CAS  PubMed  Google Scholar 

  18. Diagnostic criteria and classification of hyperglycaemia first detected in pregnancy: a World Health Organization Guideline (2014) Diabetes Research and Clinical Practice. 103(3):341–363. https://doi.org/10.1016/j.diabres.2013.10.012 (PMID: 24847517)

  19. Wang Q, Sun L, Yan J, Wang S, Zhang J, Zheng X (2017) Expression of vascular endothelial growth factor and caspase-3 in mucinous breast carcinoma and infiltrating ductal carcinoma-not otherwise specified, and the correlation with disease-free survival. Oncol Lett 14:4890–4896

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bursac Z, Gauss CH, Williams DK et al (2008) Purposeful selection of variables in logistic regression. Source Code Biol Med 3:17. https://doi.org/10.1186/1751-0473-3-17

    Article  PubMed  PubMed Central  Google Scholar 

  21. Highman TJ, Friedman JE, Huston LP, Wong WW, Catalano PM (1998) Longitudinal changes in maternal serum leptin concentrations, body composition, and resting metabolic rate in pregnancy. Am J Obstet Gynecol 178(5):1010–1015. https://doi.org/10.1016/s0002-9378(98)70540-x (PMID: 9609576)

    Article  CAS  PubMed  Google Scholar 

  22. Brelje TC, Scharp DW, Lacy PE, Ogren L, Talamantes F, Robertson M, Friesen HG, Sorenson RL (1993) Effect of homologous placental lactogens, prolactins, and growth hormones on islet B-cell division and insulin secretion in rat, mouse, and human islets: implication for placental lactogen regulation of islet function during pregnancy. Endocrinology 132(2):879–887. https://doi.org/10.1210/endo.132.2.8425500 (PMID: 8425500)

    Article  CAS  PubMed  Google Scholar 

  23. Rieck S, Kaestner KH (2010) Expansion of beta-cell mass in response to pregnancy. Trends Endocrinol Metab 21(3):151–158. https://doi.org/10.1016/j.tem.2009.11.001 (Epub 2009 Dec 16. PMID: 20015659; PMCID: PMC3627215)

    Article  CAS  PubMed  Google Scholar 

  24. Ashcroft FM, Rohm M, Clark A, Brereton MF (2017) Is type 2 diabetes a glycogen storage disease of pancreatic β cells? Cell Metab 26(1):17–23. https://doi.org/10.1016/j.cmet.2017.05.014 (PMID: 28683284; PMCID: PMC5890904)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Khambule L, George JA (2019) The Role of inflammation in the development of GDM and the use of markers of inflammation in GDM screening. Adv Exp Med Biol 1134:217–242. https://doi.org/10.1007/978-3-030-12668-1_12 (PMID: 30919340)

    Article  CAS  PubMed  Google Scholar 

  26. Esser N, Legrand-Poels S, Piette J, Scheen AJ, Paquot N (2014) Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res Clin Pract 105(2):141–150. https://doi.org/10.1016/j.diabres.2014.04.006 (Epub 2014 Apr 13. PMID: 24798950)

    Article  CAS  PubMed  Google Scholar 

  27. Lawrence T (2009) The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol 1(6):a001651. https://doi.org/10.1101/cshperspect.a001651 (PMID: 20457564; PMCID: PMC2882124)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Stephens JM, Lee J, Pilch PF (1997) Tumor necrosis factor-alpha-induced insulin resistance in 3T3-L1 adipocytes is accompanied by a loss of insulin receptor substrate-1 and GLUT4 expression without a loss of insulin receptor-mediated signal transduction. J Biol Chem 272(2):971–976. https://doi.org/10.1074/jbc.272.2.971 (PMID: 8995390)

    Article  CAS  PubMed  Google Scholar 

  29. Hotamisligil GS, Murray DL, Choy LN, Spiegelman BM (1994) Tumor necrosis factor alpha inhibits signaling from the insulin receptor. Proc Natl Acad Sci USA 91(11):4854–4858. https://doi.org/10.1073/pnas.91.11.4854 (PMID: 8197147; PMCID: PMC43887)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kinalski M, Telejko B, Kuźmicki M, Kretowski A, Kinalska I (2005) Tumor necrosis factor alpha system and plasma adiponectin concentration in women with gestational diabetes. Horm Metab Res 37(7):450–454. https://doi.org/10.1055/s-2005-870238 (PMID: 16034719)

    Article  CAS  PubMed  Google Scholar 

  31. Huynh J, Dawson D, Roberts D, Bentley-Lewis R (2015) A systematic review of placental pathology in maternal diabetes mellitus. Placenta 36(2):101–114. https://doi.org/10.1016/j.placenta.2014.11.021 (Epub 2014 Dec 5. PMID: 25524060; PMCID: PMC4339292)

    Article  CAS  PubMed  Google Scholar 

  32. Fadini GP, Albiero M, Bonora BM, Avogaro A (2019) Angiogenic abnormalities in diabetes mellitus: mechanistic and clinical aspects. J Clin Endocrinol Metab 104(11):5431–5444. https://doi.org/10.1210/jc.2019-00980 (PMID: 31211371)

    Article  PubMed  Google Scholar 

  33. Djelmiš J, Desoye G, Ivaniševic M (eds) (2005) Diabetology of pregnancy. Front Diabetes. 17:110–126 https://doi.org/10.1159/000087407

  34. Thangarajah H, Vial IN, Grogan RH, Yao D, Shi Y, Januszyk M, Galiano RD, Chang EI, Galvez MG, Glotzbach JP, Wong VW, Brownlee M, Gurtner GC (2010) HIF-1a dysfunction in diabetes. Cell Cycle 9(1):75–79

    Article  CAS  PubMed  Google Scholar 

  35. Venneri MA, Barbagallo F, Fiore D, De Gaetano R, Giannetta E, Sbardella E, Pozza C, Campolo F, Naro F, Lenzi A, Isidori AM (2019) PDE5 inhibition stimulates Tie2-expressing monocytes and angiopoietin-1 restoring angiogenic homeostasis in diabetes. J Clin Endocrinol Metab 104(7):2623–2636

    Article  PubMed  Google Scholar 

  36. Okamoto T, Tanaka S, Stan AC, Koike T, Kase M, Makita Z, Sawa H, Nagashima K (2002) Advanced glycation end products induce angiogenesis in vivo. Microvasc Res 63:186–195

    Article  CAS  PubMed  Google Scholar 

  37. Hellström M, Gerhardt H, Kalén M, Li X, Eriksson U, Wolburg H, Betsholtz C (2001) Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol 153:543–553

    Article  PubMed  PubMed Central  Google Scholar 

  38. Warmke N, Griffin KJ, Cubbon RM (2016) Pericytes in diabetes associated vascular disease. J Diabetes Complications 30(8):1643–1650

    Article  PubMed  Google Scholar 

  39. Davis LE, Widness JA, Brace RA (2003) Renal and placental secretion of erythropoietin during anemia or hypoxia in the ovine fetus. Am J Obstet Gynecol 189:1764–1770

    Article  CAS  PubMed  Google Scholar 

  40. Benyo DF, Conrad KP (1999) Expression of the erythropoietin receptor by trophoblast cells in the human placenta. Biol Reprod 60:861–870

    Article  CAS  Google Scholar 

  41. Kim SY, Sappenfield W, Sharma AJ, Wilson HG, Bish CL, Salihu HM, England LJ (2013) Racial/ethnic differences in the prevalence of gestational diabetes mellitus and maternal overweight and obesity, by nativity, Florida, 2004–2007. Obesity (Silver Spring) 21(1):E33-40. https://doi.org/10.1002/oby.20025 (PMID: 23404915; PMCID: PMC4392762)

    Article  PubMed  Google Scholar 

  42. Grieger JA, Leemaqz SY, Knight EJ et al (2022) Relative importance of metabolic syndrome components for developing gestational diabetes. Arch Gynecol Obstet 305:995–1002. https://doi.org/10.1007/s00404-021-06279-1

    Article  CAS  PubMed  Google Scholar 

  43. Xi F, Chen H, Chen Q et al (2021) Second-trimester and third-trimester maternal lipid profiles significantly correlated to LGA and macrosomia. Arch Gynecol Obstet 304:885–894. https://doi.org/10.1007/s00404-021-06010-0

    Article  CAS  PubMed  Google Scholar 

  44. Yoles I, Sheiner E, Wainstock T (2021) First pregnancy risk factors and future gestational diabetes mellitus. Arch Gynecol Obstet 304:929–934. https://doi.org/10.1007/s00404-021-06024-8

    Article  CAS  PubMed  Google Scholar 

  45. López-Tinoco C, Roca M, Fernández-Deudero A, García-Valero A, Bugatto F, Aguilar-Diosdado M, Bartha JL (2012) Cytokine profile, metabolic syndrome and cardiovascular disease risk in women with late-onset gestational diabetes mellitus. Cytokine 58(1):14–19. https://doi.org/10.1016/j.cyto.2011.12.004 (Epub 2011 Dec 24. PMID: 22200508)

    Article  CAS  PubMed  Google Scholar 

  46. Richardson AC, Carpenter MW (2007) Inflammatory mediators in gestational diabetes mellitus. Obstet Gynecol Clin North Am 34(2):213–224. https://doi.org/10.1016/j.ogc.2007.04.001 (PMID: 17572268)

    Article  PubMed  Google Scholar 

  47. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112(12):1796–1808. https://doi.org/10.1172/JCI19246 (PMID: 14679176; PMCID: PMC296995)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gregor MF, Hotamisligil GS (2011) Inflammatory mechanisms in obesity. Annu Rev Immunol 29:415–445. https://doi.org/10.1146/annurev-immunol-031210-101322 (PMID: 21219177)

    Article  CAS  PubMed  Google Scholar 

  49. Bergmann K, Sypniewska G (2013) Diabetes as a complication of adipose tissue dysfunction. Is there a role for potential new biomarkers? Clin Chem Lab Med 51(1):177–185. https://doi.org/10.1515/cclm-2012-0490 (PMID: 23241684)

    Article  CAS  PubMed  Google Scholar 

  50. Dubova EA, Pavlov KA, Borovkova EI, Bayramova MA, Makarov IO, Shchegolev AI (2011) Vascular endothelial growth factor and its receptors in the placenta of pregnant women with obesity. Bull Exp Biol Med 151(2):253–258. https://doi.org/10.1007/s10517-011-1302-3 (PMID: 22238763.51)

    Article  CAS  PubMed  Google Scholar 

  51. Yi QY, Deng G, Chen N et al (2016) Metformin inhibits development of diabetic retinopathy through inducing alternative splicing of VEGF-A. Am J Transl Res 8(9):3947–3954

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Joe SG, Yoon YH, Choi JA, Koh J-Y (2015) Anti-angiogenic effect of metformin in mouse oxygen-induced retinopathy is mediated by reducing levels of the vascular endothelial growth factor receptor Flk-1. PLoS ONE 10(3):e0119708. https://doi.org/10.1371/journal.pone.0119708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang K, Han ES, Dellinger TH, Lu J, Nam S, Anderson RA, Yim JH, Wen W (2017) Cinnamon extract reduces VEGF expression via suppressing HIF-1α gene expression and inhibits tumor growth in mice. Mol Carcinog 56(2):436–446. https://doi.org/10.1002/mc.22506

    Article  CAS  PubMed  Google Scholar 

  54. Hosni A, El-Twab SA, Abdul-Hamid M, Prinsen E, AbdElgawad H, Abdel-Moneim A, Beemster GTS (2021) Cinnamaldehyde mitigates placental vascular dysfunction of gestational diabetes and protects from the associated fetal hypoxia by modulating placental angiogenesis, metabolic activity and oxidative stress. Pharmacol Res 165:105426. https://doi.org/10.1016/j.phrs.2021.105426

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: AS and DP; methodology: VAD; validation: VA, AL and DP; formal analysis: EDR; investigation: AS; resources: AR and MDL; data curation: LT; writing—original draft preparation: AS; writing—review and editing: DP; visualization: VA; supervision: AL; project administration: AS. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Angelo Sirico.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sirico, A., Rossi, E.D., Degennaro, V.A. et al. Placental diabesity: placental VEGF and CD31 expression according to pregestational BMI and gestational weight gain in women with gestational diabetes. Arch Gynecol Obstet 307, 1823–1831 (2023). https://doi.org/10.1007/s00404-022-06673-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-022-06673-3

Keywords

Navigation