Skip to main content

Advertisement

Log in

Telocytes and endometriosis

  • Review
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Endometriosis involving the presence and growth of glands and stroma outside the uterine cavity is a common, inflammatory, benign gynecologic disease. Nevertheless, no single theory can exactly account for the pathogenesis of endometriosis. Telocytes, a kind of novel mesenchymal cells, have been suggested to be crucial in promoting angiogenesis and increasing the activity of endometrial interstitial cells and inflammatory cells. Given above roles, telocytes may be considered as the possible pathogenesis of endometriosis. We reviewed the current literature on telocytes. The following aspects were considered: (A) the telocytes’ typical characteristics, function, and morphological changes in endometriosis; (B) the potential role of telocytes in endometriosis by impacting the inflammation, invasion, and angiogenesis; (C) telocytes as the potential treatment options for endometriosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Vigano P, Somigliana E, Panina P, Rabellotti E, Vercellini P, Candiani M (2012) Principles of phenomics in endometriosis. Hum Reprod Update 18(3):248–259. https://doi.org/10.1093/humupd/dms001

    Article  CAS  Google Scholar 

  2. Blum S, Fasching PA, Hildebrandt T, Lermann J, Heindl F, Born T et al (2022) Comprehensive characterization of endometriosis patients and disease patterns in a large clinical cohort. Arch Gynecol Obstet 305(4):977–984. https://doi.org/10.1007/s00404-021-06200-w

    Article  Google Scholar 

  3. Zondervan KT, Becker CM, Missmer SA (2020) Endometriosis. N Engl J Med 382(13):1244–1256. https://doi.org/10.1056/NEJMra1810764

    Article  CAS  Google Scholar 

  4. Rogers PA, D’Hooghe TM, Fazleabas A, Gargett CE, Giudice LC, Montgomery GW, Rombauts L, Salamonsen LA, Zondervan KT (2009) Priorities for endometriosis research: recommendations from an international consensus workshop. Reprod Sci 16(4):335–346. https://doi.org/10.1177/1933719108330568

    Article  Google Scholar 

  5. Jiang QY, Wu RJ (2012) Growth mechanisms of endometriotic cells in implanted places: a review. Gynecol Endocrinol 28(7):562–567. https://doi.org/10.3109/09513590.2011.650662

    Article  Google Scholar 

  6. Rogers PA, Donoghue JF, Walter LM, Girling JE (2009) Endometrial angiogenesis, vascular maturation, and lymphangiogenesis. Reprod Sci 16(2):147–151. https://doi.org/10.1177/1933719108325509

    Article  Google Scholar 

  7. Marquardt RM, Kim TH, Shin JH, Jeong JW (2019) Progesterone and estrogen signaling in the endometrium: what goes wrong in endometriosis. Int J Mol Sci. https://doi.org/10.3390/ijms20153822

    Article  Google Scholar 

  8. Wang Y, Nicholes K, Shih IM (2020) The origin and pathogenesis of endometriosis. Annu Rev Pathol 15:71–95. https://doi.org/10.1146/annurev-pathmechdis-012419-032654

    Article  CAS  Google Scholar 

  9. Xu T, Lu SS, Zhang HQ (2016) Transmission electron microscope evidence of telocytes in canine dura mater. J Cell Mol Med 20(1):188–192. https://doi.org/10.1111/jcmm.12726

    Article  CAS  Google Scholar 

  10. Zhang HQ, Lu SS, Xu T, Feng YL, Li H, Ge JB (2015) Morphological evidence of telocytes in mice aorta. Chin Med J 128(3):348–352. https://doi.org/10.4103/0366-6999.150102 (Engl)

    Article  Google Scholar 

  11. Li YY, Lu SS, Xu T, Zhang HQ, Li H (2015) Comparative analysis of telomerase activity in CD117(+) CD34(+) cardiac telocytes with bone mesenchymal stem cells, cardiac fibroblasts and cardiomyocytes. Chin Med J 128(14):1942–1947. https://doi.org/10.4103/0366-6999.160560 (Engl)

    Article  Google Scholar 

  12. Gherghiceanu M, Manole CG, Popescu LM (2010) Telocytes in endocardium: electron microscope evidence. J Cell Mol Med 14(9):2330–2334. https://doi.org/10.1111/j.1582-4934.2010.01133.x

    Article  Google Scholar 

  13. Suciu L, Popescu LM, Gherghiceanu M, Regalia T, Nicolescu MI, Hinescu ME, Faussone-Pellegrini MS (2010) Telocytes in human term placenta: morphology and phenotype. Cells Tissues Organs 192(5):325–339. https://doi.org/10.1159/000319467

    Article  CAS  Google Scholar 

  14. Zheng Y, Li H, Manole CG, Sun A, Ge J, Wang X (2011) Telocytes in trachea and lungs. J Cell Mol Med 15(10):2262–2268. https://doi.org/10.1111/j.1582-4934.2011.01404.x

    Article  CAS  Google Scholar 

  15. Popescu LM, Manole E, Serboiu CS, Manole CG, Suciu LC, Gherghiceanu M, Popescu BO (2011) Identification of telocytes in skeletal muscle interstitium: implication for muscle regeneration. J Cell Mol Med 15(6):1379–1392. https://doi.org/10.1111/j.1582-4934.2011.01330.x

    Article  CAS  Google Scholar 

  16. Cretoiu SM, Cretoiu D, Marin A, Radu BM, Popescu LM (2013) Telocytes: ultrastructural, immunohistochemical and electrophysiological characteristics in human myometrium. Reproduction 145(4):357–370. https://doi.org/10.1530/REP-12-0369

    Article  CAS  Google Scholar 

  17. Xiao J, Wang F, Liu Z, Yang C (2013) Telocytes in liver: electron microscopic and immunofluorescent evidence. J Cell Mol Med 17(12):1537–1542. https://doi.org/10.1111/jcmm.12195

    Article  Google Scholar 

  18. Aleksandrovych V, Walocha JA, Gil K (2016) Telocytes in female reproductive system (human and animal). J Cell Mol Med 20(6):994–1000. https://doi.org/10.1111/jcmm.12843

    Article  Google Scholar 

  19. Varga I, Urban L, Kajanova M, Polak S (2016) Functional histology and possible clinical significance of recently discovered telocytes inside the female reproductive system. Arch Gynecol Obstet 294(2):417–422. https://doi.org/10.1007/s00404-016-4106-x

    Article  Google Scholar 

  20. Xu T, Zhu ZL, Wu CQ, KE JY, Zhang HQ (2021) Identification and morphological features of telocytes in endometriosis. Chinese J Pathophysiol 37(5):921–927

    Google Scholar 

  21. Shafik A, El-Sibai O, Shafik I, Shafik AA (2005) Immunohistochemical identification of the pacemaker cajal cells in the normal human vagina. Arch Gynecol Obstet 272(1):13–16. https://doi.org/10.1007/s00404-005-0725-3

    Article  Google Scholar 

  22. Hatta K, Huang ML, Weisel RD, Li RK (2012) Culture of rat endometrial telocytes. J Cell Mol Med 16(7):1392–1396. https://doi.org/10.1111/j.1582-4934.2012.01583.x

    Article  CAS  Google Scholar 

  23. Urban L, Miko M, Kajanova M, Bozikova S, Mrazova H, Varga I (2016) Telocytes (interstitial Cajal-like cells) in human fallopian tubes. Bratisl Lek Listy 117(5):263–267. https://doi.org/10.4149/bll_2016_051

    Article  CAS  Google Scholar 

  24. Ciontea SM, Radu E, Regalia T, Ceafalan L, Cretoiu D, Gherghiceanu M, Braga RI, Malincenco M, Zagrean L, Hinescu ME, Popescu LM (2005) C-kit immunopositive interstitial cells (Cajal-type) in human myometrium. J Cell Mol Med 9(2):407–420. https://doi.org/10.1111/j.1582-4934.2005.tb00366.x

    Article  Google Scholar 

  25. Gherghiceanu M, Popescu LM (2005) Interstitial Cajal-like cells (ICLC) in human resting mammary gland stroma. transmission electron microscope (TEM) identification. J Cell Mol Med 9(4):893–910. https://doi.org/10.1111/j.1582-4934.2005.tb00387.x

    Article  Google Scholar 

  26. Pieri L, Vannucchi MG, Faussone-Pellegrini MS (2008) Histochemical and ultrastructural characteristics of an interstitial cell type different from ICC and resident in the muscle coat of human gut. J Cell Mol Med 12(5B):1944–1955. https://doi.org/10.1111/j.1582-4934.2008.00461.x

    Article  Google Scholar 

  27. Popescu LM, Faussone-Pellegrini MS (2010) TELOCYTES—a case of serendipity: the winding way from interstitial cells of cajal (ICC), via interstitial cajal-like cells (ICLC) to TELOCYTES. J Cell Mol Med 14(4):729–740. https://doi.org/10.1111/j.1582-4934.2010.01059.x

    Article  CAS  Google Scholar 

  28. Manole CG, Cismasiu V, Gherghiceanu M, Popescu LM (2011) Experimental acute myocardial infarction: telocytes involvement in neo-angiogenesis. J Cell Mol Med 15(11):2284–2296. https://doi.org/10.1111/j.1582-4934.2011.01449.x

    Article  CAS  Google Scholar 

  29. Popescu LM, Gherghiceanu M, Suciu LC, Manole CG, Hinescu ME (2011) Telocytes and putative stem cells in the lungs: electron microscopy, electron tomography and laser scanning microscopy. Cell Tissue Res 345(3):391–403. https://doi.org/10.1007/s00441-011-1229-z

    Article  Google Scholar 

  30. Cretoiu D, Ciontea SM, Popescu LM, Ceafalan L, Ardeleanu C (2006) Interstitial Cajal-like cells (ICLC) as steroid hormone sensors in human myometrium: immunocytochemical approach. J Cell Mol Med 10(3):789–795. https://doi.org/10.1111/j.1582-4934.2006.tb00438.x

    Article  CAS  Google Scholar 

  31. Popescu LM, Gherghiceanu M, Manole CG, Faussone-Pellegrini MS (2009) Cardiac renewing: interstitial cajal-like cells nurse cardiomyocyte progenitors in epicardial stem cell niches. J Cell Mol Med 13(5):866–886. https://doi.org/10.1111/j.1582-4934.2009.00758.x

    Article  CAS  Google Scholar 

  32. Yang J, Chi C, Liu Z, Yang G, Shen ZJ, Yang XJ (2015) Ultrastructure damage of oviduct telocytes in rat model of acute salpingitis. J Cell Mol Med 19(7):1720–1728. https://doi.org/10.1111/jcmm.12548

    Article  Google Scholar 

  33. Yang XJ, Yang J, Liu Z, Yang G, Shen ZJ (2015) Telocytes damage in endometriosis-affected rat oviduct and potential impact on fertility. J Cell Mol Med 19(2):452–462. https://doi.org/10.1111/jcmm.12427

    Article  CAS  Google Scholar 

  34. Aleksandrovych V, Pasternak A, Gil K (2019) Telocytes in the architecture of uterine fibroids. Folia Med Cracov 59(4):33–44. https://doi.org/10.24425/fmc.2019.131378

    Article  Google Scholar 

  35. Kamergorodsky G, Ribeiro PA, Galvao MA, Abrao MS, Donadio N, Lemos NL, Aoki T (2009) Histologic classification of specimens from women affected by superficial endometriosis, deeply infiltrating endometriosis, and ovarian endometriomas. Fertil Steril 92(6):2074–2077. https://doi.org/10.1016/j.fertnstert.2009.05.086

    Article  Google Scholar 

  36. Szukiewicz D, Stangret A, Ruiz-Ruiz C, Olivares EG, Soriţău O, Suşman S, Szewczyk G (2021) Estrogen- and progesterone (P4)-mediated epigenetic modifications of endometrial stromal cells (EnSCs) and/or mesenchymal stem/stromal cells (MSCs) in the etiopathogenesis of endometriosis. Stem Cell Rev Rep 17(4):1174–1193. https://doi.org/10.1007/s12015-020-10115-5

    Article  Google Scholar 

  37. Tang XL, Zhang FL, Jiang XJ, Yang XJ (2019) Telocytes enhanced the proliferation, adhesion and motility of endometrial stromal cells as mediated by the ERK pathway in vitro. Am J Transl Res 11(2):572–585

    CAS  Google Scholar 

  38. Klemmt PA, Carver JG, Koninckx P, McVeigh EJ, Mardon HJ (2007) Endometrial cells from women with endometriosis have increased adhesion and proliferative capacity in response to extracellular matrix components: towards a mechanistic model for endometriosis progression. Hum Reprod 22(12):3139–3147. https://doi.org/10.1093/humrep/dem262

    Article  Google Scholar 

  39. Banu SK, Lee J, Speights VJ, Starzinski-Powitz A, Arosh JA (2008) Cyclooxygenase-2 regulates survival, migration, and invasion of human endometriotic cells through multiple mechanisms. Endocrinology 149(3):1180–1189. https://doi.org/10.1210/en.2007-1168

    Article  CAS  Google Scholar 

  40. Delbandi AA, Mahmoudi M, Shervin A, Akbari E, Jeddi-Tehrani M, Sankian M, Kazemnejad S, Zarnani AH (2013) Eutopic and ectopic stromal cells from patients with endometriosis exhibit differential invasive, adhesive, and proliferative behavior. Fertil Steril 100(3):761–769. https://doi.org/10.1016/j.fertnstert.2013.04.041

    Article  Google Scholar 

  41. Aleksandrovych V, Kurnik-Lucka M, Bereza T, Białas M, Pasternak A, Cretoiu D, Walocha JA, Gil K (2019) The autonomic innervation and uterine telocyte interplay in leiomyoma formation. Cell Transpl 28(5):619–629. https://doi.org/10.1177/0963689719833303

    Article  Google Scholar 

  42. Kondo A, Kaestner KH (2019) Emerging diverse roles of telocytes. Development. https://doi.org/10.1242/dev.175018

    Article  Google Scholar 

  43. Klein M, Lapides L, Fecmanova D, Varga I (2020) From TELOCYTES to TELOCYTOPATHIES do recently described interstitial cells play a role in female idiopathic infertility? Medicina. https://doi.org/10.3390/medicina56120688

    Article  Google Scholar 

  44. Janas P, Kucybala I, Radon-Pokracka M, Huras H (2018) Telocytes in the female reproductive system an overview of up to date knowledge. Adv Clin Exp Med. https://doi.org/10.17219/acem/68845

    Article  Google Scholar 

  45. Gherghiceanu M, Popescu LM (2012) Cardiac telocytes - their junctions and functional implications. Cell Tissue Res 348(2):265–279. https://doi.org/10.1007/s00441-012-1333-8

    Article  CAS  Google Scholar 

  46. Wang L, Song D, Wei C, Chen C, Yang YW, Deng XY, Gu JY (2020) Telocytes inhibited inflammatory factor expression and enhanced cell migration in LPS-induced skin wound healing models in vitro and in vivo. J Transl Med 18(1):60. https://doi.org/10.1186/s12967-020-02217-y

    Article  CAS  Google Scholar 

  47. Klemmt P, Starzinski-Powitz A (2018) Molecular and cellular pathogenesis of endometriosis. Curr Womens Health Rev 14(2):106–116. https://doi.org/10.2174/1573404813666170306163448

    Article  CAS  Google Scholar 

  48. Shigesi N, Kvaskoff M, Kirtley S, Feng Q, Fang H, Knight JC, Missmer SA, Rahmioglu N, Zondervan KT, Becker CM (2019) The association between endometriosis and autoimmune diseases:a systematic review and meta-analysis. Hum Reprod Update 25(4):486–503. https://doi.org/10.1093/humupd/dmz014

    Article  Google Scholar 

  49. Symons LK, Miller JE, Kay VR, Marks RM, Liblik K, Koti M, Tayade C (2018) The immunopathophysiology of endometriosis. Trends Mol Med 24(9):748–762. https://doi.org/10.1016/j.molmed.2018.07.004

    Article  CAS  Google Scholar 

  50. Rolla E (2019) Endometriosis: advances and controversies in classification, pathogenesis, diagnosis, and treatment. F1000Res. https://doi.org/10.12688/f1000research.14817.1

    Article  Google Scholar 

  51. Khoufache K, Michaud N, Harir N, Bondza PK, Akoum A (2012) Anomalies in the inflammatory response in endometriosis and possible consequences a review. Minerva Endocrino 37(1):75–92

    CAS  Google Scholar 

  52. Weiss G, Goldsmith LT, Taylor RN, Bellet D, Taylor HS (2009) Inflammation in reproductive disorders. Reprod Sci 16(2):216–229. https://doi.org/10.1177/1933719108330087

    Article  CAS  Google Scholar 

  53. Malhotra N, Karmakar D, Tripathi V, Luthra K, Kumar S (2012) Correlation of angiogenic cytokines-leptin and IL-8 in stage, type and presentation of endometriosis. Gynecol Endocrinol 28(3):224–227. https://doi.org/10.3109/09513590.2011.593664

    Article  CAS  Google Scholar 

  54. Ahn SH, Monsanto SP, Miller C, Singh SS, Thomas R, Tayade C (2015) Pathophysiology and immune dysfunction in endometriosis. Biomed Res Int. https://doi.org/10.1155/2015/795976

    Article  Google Scholar 

  55. Beste MT, Pfaffle-Doyle N, Prentice EA, Morris SN, Lauffenburger DA, Isaacson KB, Griffith LG (2014) Molecular network analysis of endometriosis reveals a role for c-Jun-regulated macrophage activation. Sci Transl Med 6(222):216r–222r. https://doi.org/10.1126/scitranslmed.3007988

    Article  CAS  Google Scholar 

  56. Koch AE, Polverini PJ, Kunkel SL, Harlow LA, DiPietro LA, Mr EV, Elner SG, Strieter RM (1992) Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 258(5089):1798–1801. https://doi.org/10.1126/science.1281554

    Article  CAS  Google Scholar 

  57. McLaren J, Prentice A, Charnock-Jones DS, Millican SA, Müller KH, Sharkey AM, Smith SK (1996) Vascular endothelial growth factor is produced by peritoneal fluid macrophages in endometriosis and is regulated by ovarian steroids. J Clin Invest 98(2):482–489. https://doi.org/10.1172/JCI118815

    Article  CAS  Google Scholar 

  58. Bacci M, Capobianco A, Monno A, Cottone L, Puppo FD, Camisa B et al (2009) Macrophages are alternatively activated in patients with endometriosis and required for growth and vascularization of lesions in a mouse model of disease. Am J Pathol 175(2):547–556. https://doi.org/10.2353/ajpath.2009.081011

    Article  CAS  Google Scholar 

  59. Cretoiu SM, Popescu LM (2014) Telocytes revisited. Biomol Concepts 5(5):353–369. https://doi.org/10.1515/bmc-2014-0029

    Article  CAS  Google Scholar 

  60. Bosco C, Diaz E, Gutierrez R, Gonzalez J, Parra-Cordero M, Rodrigo R, Barja P (2015) A putative role for telocytes in placental barrier impairment during preeclampsia. Med Hypotheses 84(1):72–77. https://doi.org/10.1016/j.mehy.2014.11.019

    Article  CAS  Google Scholar 

  61. Cretoiu SM, Cretoiu D, Popescu LM (2012) Human myometrium—the ultrastructural 3D network of telocytes. J Cell Mol Med 16(11):2844–2849. https://doi.org/10.1111/j.1582-4934.2012.01651.x

    Article  Google Scholar 

  62. Chi C, Jiang XJ, Su L, Shen ZJ, Yang XJ (2015) In vitro morphology, viability and cytokine secretion of uterine telocyte-activated mouse peritoneal macrophages. J Cell Mol Med 19(12):2741–2750. https://doi.org/10.1111/jcmm.12711

    Article  CAS  Google Scholar 

  63. Jiang XJ, Cretoiu D, Shen ZJ, Yang XJ (2018) An in vitro investigation of telocytes-educated macrophages: morphology, heterocellular junctions, apoptosis and invasion analysis. J Transl Med 16(1):85. https://doi.org/10.1186/s12967-018-1457-z

    Article  CAS  Google Scholar 

  64. Cheng J, Yang HL, Gu CJ, Liu YK, Shao J, Zhu R, He YY, Zhu XY, Li MQ (2019) Melatonin restricts the viability and angiogenesis of vascular endothelial cells by suppressing HIF-1alpha/ROS/VEGF. Int J Mol Med 43(2):945–955. https://doi.org/10.3892/ijmm.2018.4021

    Article  CAS  Google Scholar 

  65. Gacche RN, Meshram RJ (2013) Targeting tumor micro-environment for design and development of novel anti-angiogenic agents arresting tumor growth. Prog Biophys Mol Biol 113(2):333–354. https://doi.org/10.1016/j.pbiomolbio.2013.10.001

    Article  CAS  Google Scholar 

  66. Park JH, Yoon J, Park B (2016) Pomolic acid suppresses HIF1alpha/VEGF-mediated angiogenesis by targeting p38-MAPK and mTOR signaling cascades. Phytomedicine 23(14):1716–1726. https://doi.org/10.1016/j.phymed.2016.10.010

    Article  CAS  Google Scholar 

  67. Krikun G (2012) Endometriosis, angiogenesis and tissue factor. Scientifica 2012:306830. https://doi.org/10.6064/2012/306830 (Cairo)

    Article  Google Scholar 

  68. Gilabert-Estelles J, Ramon LA, Espana F, Gilabert J, Vila V, Réganon E, Castelló R, Chirivella M, Estellés A (2007) Expression of angiogenic factors in endometriosis: relationship to fibrinolytic and metalloproteinase systems. Hum Reprod 22(8):2120–2127. https://doi.org/10.1093/humrep/dem149

    Article  CAS  Google Scholar 

  69. Taylor RN, Yu J, Torres PB, Schickedanz AC, Park JK, Mueller MD, Sidell N (2009) Mechanistic and therapeutic implications of angiogenesis in endometriosis. Reprod Sci 16(2):140–146. https://doi.org/10.1177/1933719108324893

    Article  CAS  Google Scholar 

  70. Bourlev V, Volkov N, Pavlovitch S, Lets N, Larsson A, Olovsson M (2006) The relationship between microvessel density, proliferative activity and expression of vascular endothelial growth factor-a and its receptors in eutopic endometrium and endometriotic lesions. Reproduction 132(3):501–509. https://doi.org/10.1530/rep.1.01110

    Article  CAS  Google Scholar 

  71. Zheng Y, Chen X, Qian M, Zhang MM, Zhang D, Bai CX, Wang Q, Wang XD (2014) Human lung telocytes could promote the proliferation and angiogenesis of human pulmonary microvascular endothelial cells in vitro. Mol Cell Ther 2:3. https://doi.org/10.1186/2052-8426-2-3

    Article  Google Scholar 

  72. Kucybala I, Janas P, Ciuk S, Cholopiak W, Klimek-Piotrowska W, Holda MK (2017) A comprehensive guide to telocytes and their great potential in cardiovascular system. Bratisl Lek Listy 118(5):302–309. https://doi.org/10.4149/BLL_2017_059

    Article  CAS  Google Scholar 

  73. Risau W (1997) Mechanisms of angiogenesis. Nature 386(6626):671–674. https://doi.org/10.1038/386671a0

    Article  CAS  Google Scholar 

  74. Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, Kearne M, Magner M, Isner JM (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85(3):221–228. https://doi.org/10.1161/01.res.85.3.221

    Article  CAS  Google Scholar 

  75. Mitrofanova L, Hazratov A, Galkovsky B, Gorshkov A, Bobkov D, Gulyaev D, Shlyakhto E (2020) Morphological and immunophenotypic characterization of perivascular interstitial cells in human glioma telocytes pericytes and mixed immunophenotypes. Oncotarget 11(4):322–346. https://doi.org/10.18632/oncotarget.27340

    Article  Google Scholar 

  76. Zheng Y, Wang X (2016) Roles of telocytes in the development of angiogenesis. Adv Exp Med Biol 913:253–261. https://doi.org/10.1007/978-981-10-1061-3_17

    Article  CAS  Google Scholar 

  77. Li H, Lu SS, Liu HN, Ge JB, Zhang HQ (2014) Scanning electron microscope evidence of telocytes in vasculature. J Cell Mol Med 18(7):1486–1489. https://doi.org/10.1111/jcmm.12333

    Article  CAS  Google Scholar 

  78. Li H, Zhang HQ, Yang L, Lu SS, Zhang HQ (2014) Telocytes in mice bone marrow: electron microscope evidence. J Cell Mol Med 18(6):975–978. https://doi.org/10.1111/jcmm.12337

    Article  Google Scholar 

  79. Reynolds LP, Borowicz PP, Caton JS, Vonnahme KA, Luther JS, Buchanan DS, Hafez SA, Grazul-Bilska AT, Redmer DA (2010) Uteroplacental vascular development and placental function:an update. Int J Dev Biol 54(2–3):355–366. https://doi.org/10.1387/ijdb.082799lr

    Article  CAS  Google Scholar 

  80. Cismasiu VB, Radu E, Popescu LM (2011) miR-193 expression differentiates telocytes from other stromal cells. J Cell Mol Med 15(5):1071–1074. https://doi.org/10.1111/j.1582-4934.2011.01325.x

    Article  CAS  Google Scholar 

  81. Soliman SA (2021) Telocytes are major constituents of the angiogenic apparatus. Sci Rep 11(1):5775. https://doi.org/10.1038/s41598-021-85166-w

    Article  CAS  Google Scholar 

  82. Freitag N, Pour SJ, Fehm TN, Toth B, Markert UR, Weber M, Togawa R, Kruessel JS, Baston-Buest DM, Bielfeld AP (2020) Are uterine natural killer and plasma cells in infertility patients associated with endometriosis, repeated implantation failure, or recurrent pregnancy loss? Arch Gynecol Obstet 302(6):1487–1494. https://doi.org/10.1007/s00404-020-05679-z

    Article  CAS  Google Scholar 

  83. Shi C, Xu HG, Zhang T, Gao YC (2022) Endometriosis decreases female sexual function and increases pain severity: a meta-analysis. Arch Gynecol Obstet. https://doi.org/10.1007/s00404-022-06478-4

    Article  Google Scholar 

  84. Klein M, Csobonyeiova M, Danisovic L, Lapides L, Varga I (2022) Telocytes in the female reproductive system: up-to-date knowledge ,challenges and possible clinical applications. Life. https://doi.org/10.3390/life12020267 (Basel)

    Article  Google Scholar 

  85. Tanbo T, Fedorcsak P (2017) Endometriosis-associated infertility: aspects of pathophysiological mechanisms and treatment options. Acta Obstet Gynecol Scand 96(6):659–667. https://doi.org/10.1111/aogs.13082

    Article  Google Scholar 

  86. Mazzoni TS, Viadanna RR, Quagio-Grassiotto I (2019) Presence, localization and morphology of TELOCYTES in developmental gonads of fishes. J Morphol 280(5):654–665. https://doi.org/10.1002/jmor.20972

    Article  CAS  Google Scholar 

  87. Li C, Zhao HL, Li YJ, Zhang YY, Liu HY, Feng FZ, Yan H (2021) The expression and significance of leukemia inhibitory factor, interleukin-6 and vascular endothelial growth factor in Chinese patients with endometriosis. Arch Gynecol Obstet 304(1):163–170. https://doi.org/10.1007/s00404-021-05980-5

    Article  CAS  Google Scholar 

  88. Yuan W, Wu YH, Chai XS, Wu XQ (2022) The colonized microbiota composition in the peritoneal fluid in women with endometriosis. Arch Gynecol Obstet. https://doi.org/10.1007/s00404-021-06338-7

    Article  Google Scholar 

  89. Smolarz B, Szyllo K, Romanowicz H (2021) Endometriosis: epidemiology classification pathogenesis treatment and genetics (review of literature). Int J Mol Sci. https://doi.org/10.3390/ijms221910554

    Article  Google Scholar 

  90. Huang YL, Zhang FL, Tang XL, Yang XJ (2021) Telocytes enhances m1 differentiation and phagocytosis while inhibits mitochondria-mediated apoptosis via activation of NF-kappaB in macrophages. Cell Transpl 30:83906678. https://doi.org/10.1177/09636897211002762

    Article  Google Scholar 

  91. Li LP, Lin M, Li L, Wang R, Zhang C, Qi GS, Xu M, Rong RM, Zhu TY (2014) Renal telocytes contribute to the repair of ischemically injured renal tubules. J Cell Mol Med 18(6):1144–1156. https://doi.org/10.1111/jcmm.12274

    Article  CAS  Google Scholar 

  92. Campeanu RA, Radu BM, Cretoiu SM, Banciu DD, Banciu A, Cretoiu D, Popescu LM (2014) Near-infrared low-level laser stimulation of telocytes from human myometrium. Lasers Med Sci 29(6):1867–1874. https://doi.org/10.1007/s10103-014-1589-1

    Article  Google Scholar 

  93. Klein M, Csobonyeiova M, Ziaran S, DaniSovic L, Varga I (2021) Cardiac telocytes 16 years on-what have we learned so far, and how close are we to routine application of the knowledge in cardiovascular regenerative medicine? Int J Mol Sci. https://doi.org/10.3390/ijms222010942

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

TX: literature searching and manuscript writing. HQZ: manuscript editing. ZLZ: manuscript reviewing, editing, and approving.

Corresponding author

Correspondence to Zhiling Zhu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

The study was approved by the Ethic Committee of Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China. It was performed in accordance with the ethical standards as laid down in the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, T., Zhang, H. & Zhu, Z. Telocytes and endometriosis. Arch Gynecol Obstet 307, 39–49 (2023). https://doi.org/10.1007/s00404-022-06634-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-022-06634-w

Keywords

Navigation