Skip to main content

Advertisement

Log in

Differential transcriptional profiles of human cumulus granulosa cells in patients with diminished ovarian reserve

  • Gynecologic Endocrinology and Reproductive Medicine
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

This study compared the gene expression profiles of cumulus granulosa cells in patients with diminished ovarian reserve and those with normal ovarian reserves to identify genes that may be involved in the pathogenesis of diminished ovarian reserve.

Methods

After retrieval of the cumulus–oocyte complex, the cumulus granulosa cells that surrounded the oocytes of 25 patients with diminished ovarian reserve and 25 patients with normal ovarian reserves were removed by mechanical stripping. Extraction of RNA from the cumulus granulosa cells was for RNA sequencing and analysis. RT-PCR was used to confirm the candidate genes. Statistical analysis was performed using student’s t test.

Results

A total of 294 upregulated genes and 336 downregulated genes were identified in the POSEIDON patients relative to the normal ovarian reserve group. Bioinformatic analysis showed that the downregulated genes were highly enriched in the Wnt signaling pathway, negative regulation of stress fiber assembly, and cell chemotaxis, while the upregulated genes were highly enriched in functions associated with the regulation of interleukin-5 production and regulation of immune system processes. According to the differential expression levels and their potential functions, IL1RL1, IL33, SFRP4, and S1PR1 were validated by quantitative RT-PCR. The results of RT-PCR were consistent with those of RNA sequencing.

Conclusion

Expression of IL1RL1, IL33, SFRP4, and S1PR1 in the cumulus granulosa cells may be involved in the pathogenesis of diminished ovarian reserve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fouany MR, Sharara FI (2013) Is there a role for DHEA supplementation in women with diminished ovarian reserve? J Assist Reprod Genet 30:1239–1244. https://doi.org/10.1007/s10815-013-0018-x

    Article  PubMed  PubMed Central  Google Scholar 

  2. Richardson SJ, Senikas V, Nelson JF (1987) Follicular depletion during the menopausal transition: evidence for accelerated loss and ultimate exhaustion. J Clin Endocrinol Metab 65:1231–1237. https://doi.org/10.1210/jcem-65-6-1231

    Article  CAS  PubMed  Google Scholar 

  3. Kyrou D, Kolibianakis EM, Venetis CA, Papanikolaou EG, Bontis J, Tarlatzis BC (2009) How to improve the probability of pregnancy in poor responders undergoing in vitro fertilization: a systematic review and meta-analysis. Fertil Steril 91:749–766. https://doi.org/10.1016/j.fertnstert.2007.12.077

    Article  CAS  PubMed  Google Scholar 

  4. Centers for Disease Control and Prevention (2016) Assisted reproductive technology national summary report. American Society for Reproductive Medicine, Society for Assisted Reproductive Technology, Atlanta

    Google Scholar 

  5. Levi AJ, Raynault MF, Bergh PA, Drews MR, Miller BT, Scott RT Jr (2001) Reproductive outcome in patients with diminished ovarian reserve. Fertil Steril 76:666–669. https://doi.org/10.1016/s0015-0282(01)02017-9

    Article  CAS  PubMed  Google Scholar 

  6. Navot D, Rosenwaks Z, Margalioth EJ (1987) Prognostic assessment of female fecundity. Lancet 2:645–647. https://doi.org/10.1016/s0140-6736(87)92439-1

    Article  CAS  PubMed  Google Scholar 

  7. Eppig JJ (2001) Oocyte control of ovarian follicular development and function in mammals. Reproduction 122:829–838. https://doi.org/10.1530/rep.0.1220829

    Article  CAS  PubMed  Google Scholar 

  8. Matzuk MM, Burns KH, Viveiros MM, Eppig JJ (2002) Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science 296:2178–2180. https://doi.org/10.1126/science.1071965

    Article  CAS  PubMed  Google Scholar 

  9. McElroy SL, Byrne JA, Chavez SL, Behr B, Hsueh AJ, Westphal LM, Pera RA (2010) Parthenogenic blastocysts derived from cumulus-free in vitro matured human oocytes. PLoS ONE 5:e10979. https://doi.org/10.1371/journal.pone.0010979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nakahara K, Saito H, Saito T, Ito M, Ohta N, Sakai N, Tezuka N, Hiroi M, Watanabe H (1997) Incidence of apoptotic bodies in membrana granulosa of the patients participating in an in vitro fertilization program. Fertil Steril 67:302–308. https://doi.org/10.1016/S0015-0282(97)81915-2

    Article  CAS  PubMed  Google Scholar 

  11. Seifer DB, Charland C, Berlinsky D, Penzias AS, Haning RV Jr, Naftolin F, Barker BE (1993) Proliferative index of human luteinized granulosa cells varies as a function of ovarian reserve. Am J Obstet Gynecol 169:1531–1535. https://doi.org/10.1016/0002-9378(93)90430-q

    Article  CAS  PubMed  Google Scholar 

  12. Fan Y, Chang Y, Wei L, Chen J, Li J, Goldsmith S, Silber S, Liang X (2019) Apoptosis of mural granulosa cells is increased in women with diminished ovarian reserve. J Assist Reprod Genet 36:1225–1235. https://doi.org/10.1007/s10815-019-01446-5

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chin KV, Seifer DB, Feng B, Lin Y, Shih WC (2002) DNA microarray analysis of the expression profiles of luteinized granulosa cells as a function of ovarian reserve. Fertil Steril 77:1214–1218. https://doi.org/10.1016/s0015-0282(02)03114-x

    Article  PubMed  Google Scholar 

  14. Greenseid K, Jindal S, Hurwitz J, Santoro N, Pal L (2011) Differential granulosa cell gene expression in young women with diminished ovarian reserve. Reprod Sci 18:892–899. https://doi.org/10.1177/1933719111398502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Skiadas CC, Duan S, Correll M, Rubio R, Karaca N, Ginsburg ES, Quackenbush J, Racowsky C (2012) Ovarian reserve status in young women is associated with altered gene expression in membrana granulosa cells. Mol Hum Reprod 18:362–371. https://doi.org/10.1093/molehr/gas008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen D, Zhang Z, Chen B, Ji D, Hao Y, Zhou P, Wei Z, Cao Y (2017) Altered microRNA and Piwi-interacting RNA profiles in cumulus cells from patients with diminished ovarian reserve. Biol Reprod 97:91–103. https://doi.org/10.1093/biolre/iox062

    Article  PubMed  Google Scholar 

  17. Woo I, Christenson LK, Gunewardena S, Ingles SA, Thomas S, Ahmady A, Chung K, Bendikson K, Paulson R, McGinnis LK (2018) Micro-RNAs involved in cellular proliferation have altered expression profiles in granulosa of young women with diminished ovarian reserve. J Assist Reprod Genet 35:1777–1786. https://doi.org/10.1007/s10815-018-1239-9

    Article  PubMed  PubMed Central  Google Scholar 

  18. Poseidon G, Alviggi C, Andersen CY, Buehler K, Conforti A, De Placido G, Esteves SC, Fischer R, Galliano D, Polyzos NP, Sunkara SK, Ubaldi FM, Humaidan P (2016) A new more detailed stratification of low responders to ovarian stimulation: from a poor ovarian response to a low prognosis concept. Fertil Steril 105:1452–1453. https://doi.org/10.1016/j.fertnstert.2016.02.005

    Article  Google Scholar 

  19. Ferraretti AP, La Marca A, Fauser BC, Tarlatzis B, Nargund G, Gianaroli L, Definition, E.W.G.O.P.O.R. (2011) ESHRE consensus on the definition of “poor response” to ovarian stimulation for in vitro fertilization: the Bologna criteria. Hum Reprod 26:1616–1624. https://doi.org/10.1093/humrep/der092

    Article  CAS  PubMed  Google Scholar 

  20. May-Panloup P, Ferre-L’Hotellier V, Moriniere C, Marcaillou C, Lemerle S, Malinge MC, Coutolleau A, Lucas N, Reynier P, Descamps P, Guardiola P (2012) Molecular characterization of corona radiata cells from patients with diminished ovarian reserve using microarray and microfluidic-based gene expression profiling. Hum Reprod 27:829–843. https://doi.org/10.1093/humrep/der431

    Article  CAS  PubMed  Google Scholar 

  21. Briley SM, Jasti S, McCracken JM, Hornick JE, Fegley B, Pritchard MT, Duncan FE (2016) Reproductive age-associated fibrosis in the stroma of the mammalian ovary. Reproduction 152:245–260. https://doi.org/10.1530/REP-16-0129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Foley KG, Pritchard MT, Duncan FE (2021) Macrophage-derived multinucleated giant cells: hallmarks of the aging ovary. Reproduction 161:V5–V9. https://doi.org/10.1530/REP-20-0489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang Z, Schlamp F, Huang L, Clark H, Brayboy L (2020) Inflammaging is associated with shifted macrophage ontogeny and polarization in the aging mouse ovary. Reproduction 159:325–337. https://doi.org/10.1530/REP-19-0330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cayrol C, Girard JP (2014) IL-33: an alarmin cytokine with crucial roles in innate immunity, inflammation and allergy. Curr Opin Immunol 31:31–37. https://doi.org/10.1016/j.coi.2014.09.004

    Article  CAS  PubMed  Google Scholar 

  25. Shimizu M, Matsuda A, Yanagisawa K, Hirota T, Akahoshi M, Inomata N, Ebe K, Tanaka K, Sugiura H, Nakashima K, Tamari M, Takahashi N, Obara K, Enomoto T, Okayama Y, Gao PS, Huang SK, Tominaga S, Ikezawa Z, Shirakawa T (2005) Functional SNPs in the distal promoter of the ST2 gene are associated with atopic dermatitis. Hum Mol Genet 14:2919–2927. https://doi.org/10.1093/hmg/ddi323

    Article  CAS  PubMed  Google Scholar 

  26. Hardman CS, Panova V, McKenzie AN (2013) IL-33 citrine reporter mice reveal the temporal and spatial expression of IL-33 during allergic lung inflammation. Eur J Immunol 43:488–498. https://doi.org/10.1002/eji.201242863

    Article  CAS  PubMed  Google Scholar 

  27. Hsu CL, Bryce PJ (2012) Inducible IL-33 expression by mast cells is regulated by a calcium-dependent pathway. J Immunol 189:3421–3429. https://doi.org/10.4049/jimmunol.1201224

    Article  CAS  PubMed  Google Scholar 

  28. Bartemes K, Chen CC, Iijima K, Drake L, Kita H (2018) IL-33-responsive group 2 innate lymphoid cells are regulated by female sex hormones in the uterus. J Immunol 200:229–236. https://doi.org/10.4049/jimmunol.1602085

    Article  CAS  PubMed  Google Scholar 

  29. Carlock CI, Wu J, Zhou C, Tatum K, Adams HP, Tan F, Lou Y (2014) Unique temporal and spatial expression patterns of IL-33 in ovaries during ovulation and estrous cycle are associated with ovarian tissue homeostasis. J Immunol 193:161–169. https://doi.org/10.4049/jimmunol.1400381

    Article  CAS  PubMed  Google Scholar 

  30. Granne I, Southcombe JH, Snider JV, Tannetta DS, Child T, Redman CW, Sargent IL (2011) ST2 and IL-33 in pregnancy and pre-eclampsia. PLoS ONE 6:e24463. https://doi.org/10.1371/journal.pone.0024463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Southcombe JH, Ledee N, Perrier d’Hauterive S, Turner K, Child T, Snider JV, Redman CW, Sargent IL, Granne I (2013) Detection of soluble ST2 in human follicular fluid and luteinized granulosa cells. PLoS ONE 8:e74385. https://doi.org/10.1371/journal.pone.0074385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Richards JS, Russell DL, Ochsner S, Hsieh M, Doyle KH, Falender AE, Lo YK, Sharma SC (2002) Novel signaling pathways that control ovarian follicular development, ovulation, and luteinization. Recent Prog Horm Res 57:195–220. https://doi.org/10.1210/rp.57.1.195

    Article  CAS  PubMed  Google Scholar 

  33. Fan HY, O’Connor A, Shitanaka M, Shimada M, Liu Z, Richards JS (2010) Beta-catenin (CTNNB1) promotes preovulatory follicular development but represses LH-mediated ovulation and luteinization. Mol Endocrinol 24:1529–1542. https://doi.org/10.1210/me.2010-0141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Maman E, Yung Y, Cohen B, Konopnicki S, Dal Canto M, Fadini R, Kanety H, Kedem A, Dor J, Hourvitz A (2011) Expression and regulation of sFRP family members in human granulosa cells. Mol Hum Reprod 17:399–404. https://doi.org/10.1093/molehr/gar010

    Article  CAS  PubMed  Google Scholar 

  35. Nakahara T, Iwase A, Nakamura T, Kondo M, Bayasula Kobayashi H, Takikawa S, Manabe S, Goto M, Kotani T, Kikkawa F (2012) Sphingosine-1-phosphate inhibits H2O2-induced granulosa cell apoptosis via the PI3K/Akt signaling pathway. Fertil Steril 98(1001–1008):e1001. https://doi.org/10.1016/j.fertnstert.2012.06.008

    Article  CAS  Google Scholar 

  36. Spiegel S, Milstien S (2002) Sphingosine 1-phosphate, a key cell signaling molecule. J Biol Chem 277:25851–25854. https://doi.org/10.1074/jbc.R200007200

    Article  CAS  PubMed  Google Scholar 

  37. Ye X (2008) Lysophospholipid signaling in the function and pathology of the reproductive system. Hum Reprod Update 14:519–536. https://doi.org/10.1093/humupd/dmn023

    Article  CAS  PubMed  Google Scholar 

  38. Zhang M, Zhang Q, Hu Y, Xu L, Jiang Y, Zhang C, Ding L, Jiang R, Sun J, Sun H, Yan G (2017) miR-181a increases FoxO1 acetylation and promotes granulosa cell apoptosis via SIRT1 downregulation. Cell Death Dis 8:e3088. https://doi.org/10.1038/cddis.2017.467

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhang Q, Sun H, Jiang Y, Ding L, Wu S, Fang T, Yan G, Hu Y (2013) MicroRNA-181a suppresses mouse granulosa cell proliferation by targeting activin receptor IIA. PLoS ONE 8:e59667. https://doi.org/10.1371/journal.pone.0059667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang C, Shen J, Kong S, Zhang M, Zhang Q, Zhou J, Zhen X, Kang N, Jiang Y, Ding L, Sun H, Yan G (2019) MicroRNA-181a promotes follicular granulosa cell apoptosis via sphingosine-1-phosphate receptor 1 expression downregulationdagger. Biol Reprod 101:975–985. https://doi.org/10.1093/biolre/ioz135

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Key Research and Development Program (2016YFC1000205).

Funding

This study was funded by the National Key Research and Development Program (2016YFC1000205).

Author information

Authors and Affiliations

Authors

Contributions

LXL: Data collection, Data analysis, Manuscript writing. BC: Data analysis, Manuscript editing. XBZ: Data collection. JFT: Data collection. JH: Project development, Manuscript editing. CQZ: Project development, Manuscript editing.

Corresponding authors

Correspondence to Jia Huang or Canquan Zhou.

Ethics declarations

Conflict of interest

The authors state that they have no conflict of interest.

Ethical approval

This study was approved by the Ethics Review Board of the First Affiliated Hospital of Sun Yat-sen University (Guangzhou, China). All patients signed the consent form.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Cai, B., Zhang, X. et al. Differential transcriptional profiles of human cumulus granulosa cells in patients with diminished ovarian reserve. Arch Gynecol Obstet 305, 1605–1614 (2022). https://doi.org/10.1007/s00404-022-06399-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-022-06399-2

Keywords

Navigation