Skip to main content
Log in

Identification of microRNA expression profiles of CD44+ ovarian cancer stem cells

  • Gynecologic Oncology
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

The aim of our study was to investigate microRNA (miRNA) expression profiles in CD44+ ovarian cancer stem cells (ovarian CSCs).

Methods

In this study, we enriched CD44+ ovarian CSCs using magnetic activated cell sorting (MACS). A combination of real-time quantitative PCR (qRT-PCR), western blot and sphere formation assays was used to demonstrate stem cell-like properties. RNA sequencing was used to detect the miRNA expression profiles in CD44+ ovarian CSCs. Transient transfection, qRT-PCR, western blot and sphere formation assays were further used to test the function of miR-181a-2-3p.

Results

We found that CD44+ ovarian CSCs showed enhanced sphere formation and expression of stemness-associated genes (NANOG, OCT4, SOX2) compared to ovarian cancer cells. The RNA sequencing results showed that the miRNA expression profiles of CD44+ ovarian CSCs were different from those of ovarian cancer cells. GO and KEGG pathway analyses indicated that these miRNAs regulate stem cell-like properties in CD44+ ovarian CSCs. In addition, miR-181a-2-3p negatively regulates the stem cell-like properties of CD44+ ovarian CSCs by targeting EGR1.

Conclusion

Our data suggest that miRNAs play important roles in regulating the stem cell-like properties of CD44+ ovarian CSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ (2009) Cancer statistics. CA Cancer J Clin 59(4):225–249. https://doi.org/10.3322/caac.20006

    Article  PubMed  Google Scholar 

  2. Torre LA, Trabert B, DeSantis CE, Miller KD, Samimi G, Runowicz CD, Gaudet MM, Jemal A, Siegel RL (2018) Ovarian cancer statistics. CA Cancer J Clin 68(4):284–296. https://doi.org/10.3322/caac.21456

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sharifzad F, Ghavami S, Verdi J, Mardpour S, Mollapour Sisakht M, Azizi Z, Taghikhani A, Los MJ, Fakharian E, Ebrahimi M, Hamidieh AA (2019) Glioblastoma cancer stem cell biology: potential theranostic targets. Drug Resist Updat 42:35–45. https://doi.org/10.1016/j.drup.2018.03.003

    Article  PubMed  Google Scholar 

  4. Pardal R, Clarke MF, Morrison SJ (2003) Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 3(12):895–902. https://doi.org/10.1038/nrc1232

    Article  CAS  PubMed  Google Scholar 

  5. Tomao F, Papa A, Strudel M, Rossi L, Lo Russo G, Benedetti Panici P, Ciabatta FR, Tomao S (2014) Investigating molecular profiles of ovarian cancer: an update on cancer stem cells. J Cancer 5(5):301–310. https://doi.org/10.7150/jca.8610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Takaishi S, Okumura T, Tu S, Wang SS, Shibata W, Vigneshwaran R, Gordon SA, Shimada Y, Wang TC (2009) Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells 27(5):1006–1020. https://doi.org/10.1002/stem.30

    Article  CAS  PubMed  Google Scholar 

  7. Du L, Wang H, He L, Zhang J, Ni B, Wang X, Jin H, Cahuzac N, Mehrpour M, Lu Y, Chen Q (2008) CD44 is of functional importance for colorectal cancer stem cells. Clin Cancer Res 14(21):6751–6760. https://doi.org/10.1158/1078-0432.CCR-08-1034

    Article  CAS  PubMed  Google Scholar 

  8. Bhattacharya R, Mitra T, Ray Chaudhuri S, Roy SS (2018) Mesenchymal splice isoform of CD44 (CD44s) promotes EMT/invasion and imparts stem-like properties to ovarian cancer cells. J Cell Biochem 119(4):3373–3383. https://doi.org/10.1002/jcb.26504

    Article  CAS  PubMed  Google Scholar 

  9. Sacks Suarez J, Gurler Main H, Muralidhar GG, Elfituri O, Xu HL, Kajdacsy-Balla AA, Barbolina MV (2019) CD44 regulates formation of spheroids and controls organ-specific metastatic colonization in epithelial ovarian carcinoma. Mol Cancer Res 17(9):1801–1814. https://doi.org/10.1158/1541-7786.MCR-18-1205

    Article  PubMed  Google Scholar 

  10. Najafi M, Mortezaee K, Ahadi R (2019) Cancer stem cell (a)symmetry & plasticity: tumorigenesis and therapy relevance. Life Sci 231:116520. https://doi.org/10.1016/j.lfs.2019.05.076

    Article  CAS  PubMed  Google Scholar 

  11. Zhang HL, Wang P, Lu MZ, Zhang SD, Zheng L (2019) c-Myc maintains the self-renewal and chemoresistance properties of colon cancer stem cells. Oncol Lett 17(5):4487–4493. https://doi.org/10.3892/ol.2019.10081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kandhavelu J, Subramanian K, Khan A, Omar A, Ruff P, Penny C (2019) Computational analysis of miRNA and their gene targets significantly involved in colorectal cancer progression. Microrna 8(1):68–75. https://doi.org/10.2174/2211536607666180803100246

    Article  CAS  PubMed  Google Scholar 

  13. Du Y, Lin Y, Yin K, Zhou L, Jiang Y, Yin W, Lu J (2019) Single nucleotide polymorphisms of let-7-related genes increase susceptibility to breast cancer. Am J Transl Res 11(3):1748–1759

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Fang Z, Li T, Chen W, Wu D, Qin Y, Liu M, Wu G, He L, Li H, Gu H (2019) Gab2 promotes cancer stem cell like properties and metastatic growth of ovarian cancer via downregulation of miR-200c. Exp Cell Res 382(1):111462. https://doi.org/10.1016/j.yexcr.2019.06.007

    Article  CAS  PubMed  Google Scholar 

  15. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF, Simeone DM (2007) Identification of pancreatic cancer stem cells. Cancer Res 67(3):1030–1037. https://doi.org/10.1158/0008-5472.CAN-06-2030

    Article  CAS  PubMed  Google Scholar 

  16. de Oliveira LF, Christoff AP, Margis R (2013) isomiRID: a framework to identify microRNA isoforms. Bioinformatics 29(20):2521–2523. https://doi.org/10.1093/bioinformatics/btt424

    Article  CAS  PubMed  Google Scholar 

  17. Yu G, Wang LG, Han Y, He QY (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16(5):284–287. https://doi.org/10.1089/omi.2011.0118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chhabra R (2018) let-7i-5p, miR-181a-2-3p and EGF/PI3K/SOX2 axis coordinate to maintain cancer stem cell population in cervical cancer. Sci Rep 8(1):7840. https://doi.org/10.1038/s41598-018-26292-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Feng YH, Su YC, Lin SF, Lin PR, Wu CL, Tung CL, Li CF, Shieh GS, Shiau AL (2019) Oct4 upregulates osteopontin via Egr1 and is associated with poor outcome in human lung cancer. BMC Cancer 19(1):791. https://doi.org/10.1186/s12885-019-6014-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sakakini N, Turchi L, Bergon A, Holota H, Rekima S, Lopez F, Paquis P, Almairac F, Fontaine D, Baeza-Kallee N, Van Obberghen-Schilling E, Junier MP, Chneiweiss H, Figarella-Branger D, Burel-Vandenbos F, Imbert J, Virolle T (2016) A positive feed-forward loop associating EGR1 and PDGFA promotes proliferation and self-renewal in glioblastoma stem cells. J Biol Chem 291(20):10684–10699. https://doi.org/10.1074/jbc.M116.720698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pieterse Z, Amaya-Padilla MA, Singomat T, Binju M, Madjid BD, Yu Y, Kaur P (2019) Ovarian cancer stem cells and their role in drug resistance. Int J Biochem Cell Biol 106:117–126. https://doi.org/10.1016/j.biocel.2018.11.012

    Article  CAS  PubMed  Google Scholar 

  22. Matz M, Coleman MP, Sant M, Chirlaque MD, Visser O, Gore M, Allemani C, the CWG (2017) The histology of ovarian cancer: worldwide distribution and implications for international survival comparisons (CONCORD-2). Gynecol Oncol 144(2):405–413. https://doi.org/10.1016/j.ygyno.2016.10.019

    Article  Google Scholar 

  23. Zong X, Nephew KP (2019) Ovarian cancer stem cells: role in metastasis and opportunity for therapeutic targeting. Cancers (Basel). https://doi.org/10.3390/cancers11070934

    Article  Google Scholar 

  24. Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H, Patrawala L, Yan H, Jeter C, Honorio S, Wiggins JF, Bader AG, Fagin R, Brown D, Tang DG (2011) The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 17(2):211–215. https://doi.org/10.1038/nm.2284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lin J, Ding D (2017) The prognostic role of the cancer stem cell marker CD44 in ovarian cancer: a meta-analysis. Cancer Cell Int 17:8. https://doi.org/10.1186/s12935-016-0376-4

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bartakova A, Michalova K, Presl J, Vlasak P, Kostun J, Bouda J (2018) CD44 as a cancer stem cell marker and its prognostic value in patients with ovarian carcinoma. J Obstet Gynaecol 38(1):110–114. https://doi.org/10.1080/01443615.2017.1336753

    Article  CAS  PubMed  Google Scholar 

  27. Slomiany MG, Dai L, Tolliver LB, Grass GD, Zeng Y, Toole BP (2009) Inhibition of functional hyaluronan-CD44 interactions in CD133-positive primary human ovarian carcinoma cells by small hyaluronan oligosaccharides. Clin Cancer Res 15(24):7593–7601. https://doi.org/10.1158/1078-0432.CCR-09-2317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Burgos-Ojeda D, Wu R, McLean K, Chen YC, Talpaz M, Yoon E, Cho KR, Buckanovich RJ (2015) CD24+ ovarian cancer cells are enriched for cancer-initiating cells and dependent on JAK2 signaling for growth and metastasis. Mol Cancer Ther 14(7):1717–1727. https://doi.org/10.1158/1535-7163.MCT-14-0607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Meng E, Long B, Sullivan P, McClellan S, Finan MA, Reed E, Shevde L, Rocconi RP (2012) CD44+/CD24- ovarian cancer cells demonstrate cancer stem cell properties and correlate to survival. Clin Exp Metastasis 29(8):939–948. https://doi.org/10.1007/s10585-012-9482-4

    Article  CAS  PubMed  Google Scholar 

  30. Fujimoto A, Kawana K, Taguchi A, Adachi K, Sato M, Nakamura H, Ogishima J, Yoshida M, Inoue T, Nishida H, Tomio K, Yamashita A, Matsumoto Y, Arimoto T, Wada-Hiraike O, Oda K, Nagamatsu T, Osuga Y, Fujii T (2016) Inhibition of endoplasmic reticulum (ER) stress sensors sensitizes cancer stem-like cells to ER stress-mediated apoptosis. Oncotarget 7(32):51854–51864. https://doi.org/10.18632/oncotarget.10126

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lin J, Zhang D, Fan Y, Chao Y, Chang J, Li N, Han H, Han C (2018) Regulation of cancer stem cell self-renewal by HOXB9 antagonizes endoplasmic reticulum stress-induced melanoma cell apoptosis via the miR-765–FOXA2 axis. J Invest Dermat 138(7):1609–1619. https://doi.org/10.1016/j.jid.2018.01.023

    Article  CAS  Google Scholar 

  32. Reinhard J, Brösicke N, Theocharidis U, Faissner A (2016) The extracellular matrix niche microenvironment of neural and cancer stem cells in the brain. Int J Biochem Cell Biol 81:174–183. https://doi.org/10.1016/j.biocel.2016.05.002

    Article  CAS  PubMed  Google Scholar 

  33. Cui B, Luo Y, Tian P, Peng F, Lu J, Yang Y, Su Q, Liu B, Yu J, Luo X, Yin L, Cheng W, An F, He B, Liang D, Wu S, Chu P, Song L, Liu X, Luo H, Xu J, Pan Y, Wang Y, Li D, Huang P, Yang Q, Zhang L, Zhou BP, Liu S, Xu G, Lam EW, Kelley KW, Liu Q (2019) Stress-induced epinephrine enhances lactate dehydrogenase A and promotes breast cancer stem-like cells. J Clin Invest 129(3):1030–1046. https://doi.org/10.1172/JCI121685

    Article  PubMed  PubMed Central  Google Scholar 

  34. Guan JL (2010) Integrin signaling through FAK in the regulation of mammary stem cells and breast cancer. IUBMB Life 62(4):268–276. https://doi.org/10.1002/iub.303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ou J, Deng J, Wei X, Xie G, Zhou R, Yu L, Liang H (2013) Fibronectin extra domain A (EDA) sustains CD133(+)/CD44(+) subpopulation of colorectal cancer cells. Stem Cell Res 11(2):820–833. https://doi.org/10.1016/j.scr.2013.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mukherjee A, Kenny HA, Lengyel E (2017) Unsaturated fatty acids maintain cancer cell stemness. Cell Stem Cell 20(3):291–292. https://doi.org/10.1016/j.stem.2017.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ji J, Yamashita T, Budhu A, Forgues M, Jia HL, Li C, Deng C, Wauthier E, Reid LM, Ye QH, Qin LX, Yang W, Wang HY, Tang ZY, Croce CM, Wang XW (2009) Identification of microRNA-181 by genome-wide screening as a critical player in EpCAM-positive hepatic cancer stem cells. Hepatology 50(2):472–480. https://doi.org/10.1002/hep.22989

    Article  CAS  PubMed  Google Scholar 

  38. Yuan L, Mu P, Huang B, Li H, Mu H, Deng Y (2018) EGR1 is essential for deoxynivalenol-induced G2/M cell cycle arrest in HepG2 cells via the ATF3DeltaZip2a/2b-EGR1-p21 pathway. Toxicol Lett 299:95–103. https://doi.org/10.1016/j.toxlet.2018.09.012

    Article  CAS  PubMed  Google Scholar 

  39. Wang S, Liang C, Ai H, Yang M, Yi J, Liu L, Song Z, Bao Y, Li Y, Sun L, Zhao H (2019) Hepatic miR-181b-5p contributes to glycogen synthesis through targeting EGR1. Dig Dis Sci 64(6):1548–1559. https://doi.org/10.1007/s10620-018-5442-4

    Article  CAS  PubMed  Google Scholar 

  40. Min IM, Pietramaggiori G, Kim FS, Passegue E, Stevenson KE, Wagers AJ (2008) The transcription factor EGR1 controls both the proliferation and localization of hematopoietic stem cells. Cell Stem Cell 2(4):380–391. https://doi.org/10.1016/j.stem.2008.01.015

    Article  CAS  PubMed  Google Scholar 

  41. Ernst A, Aigner M, Nakata S, Engel F, Schlotter M, Kloor M, Brand K, Schmitt S, Steinert G, Rahbari N, Koch M, Radlwimmer B, Weitz J, Lichter P (2011) A gene signature distinguishing CD133hi from CD133- colorectal cancer cells: essential role for EGR1 and downstream factors. Pathology 43(3):220–227. https://doi.org/10.1097/PAT.0b013e328344e391

    Article  PubMed  Google Scholar 

Download references

Funding

This research work was funded by Nanjing Medical Science and Technique Development Foundation (grant number ZKX17042) Nanjing Technological Developmen Program (grant number 201715050).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design: LW; XZ; YL; YC; ZF; JC; SX; JL; HR. Cell biology technique (cell culture): LW; XZ; YL; YC. Molecular biology technique (QRT-PCR, WB): LW; XZ; YL. Data analysis and interpretation: LW; XZ; YL; YC; ZF; JC; SX; JL; HR. Writing—original draft preparation: LW; XZ; YL. Writing—review and editing: HR. Funding acquisition: HR. Supervision: SX; JL; HR.

Corresponding authors

Correspondence to Sujuan Xu, Juan Lv or Hongjie Ruan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 122 KB)

Supplementary file2 (PDF 201 KB)

404_2021_6387_MOESM3_ESM.xlsx

Supplementary file3 (XLSX 100 KB)                                                                                                                                                                                             

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhi, X., Lu, Y. et al. Identification of microRNA expression profiles of CD44+ ovarian cancer stem cells. Arch Gynecol Obstet 306, 461–472 (2022). https://doi.org/10.1007/s00404-021-06387-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-021-06387-y

Keywords

Navigation