Skip to main content
Log in

Efficacy of artificial oocyte activation in patients with embryo developmental problems: a sibling oocyte control study

  • Gynecologic Endocrinology and Reproductive Medicine
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

To explore whether artificial oocyte activation (AOA) can improve embryo developmental potentiality and pregnancy outcomes for patients with a history of embryo developmental problem.

Methods

This was a retrospective study and candidate patients with embryo development problems were collected. A total of 1422 MII eggs from the enrolled 140 patients were randomized divided equally into 2 groups, half for the AOA group (AOA), and the rest of sibling mature eggs for the control group (non-AOA). The patients were further divided into two subgroups: (1) the rate of good-quality day 3 embryos was 0% (group 1, n = 66); (2) the rate of good-quality day 3 embryos ranged from 1 to 30% (group 2, n = 74).

Results

In the early embryonic growth, there were no significant differences in the outcomes of AOA and non-AOA groups in terms of normal fertilization rates, cleavage rates, day 3 good-quality embryo rates and available blastocyst rates (72.7% vs. 79.3%, 97.4% vs. 98.0%, 20.1% vs. 19.7%, 6.6% vs. 8.4% in group 1, respectively; 77.7% vs. 81.9%, 98.1% vs. 97.0%, 25.8% vs. 22.1%, 9.6% vs. 9.3% in group 2, respectively). In the late embryonic growth, no significant differences were found in biochemical and clinical pregnancy rates, implantation rates, miscarriage rates, and live-birth rates (50.0% vs. 45.2%, 45.2% vs. 40.5%, 37.3% vs. 31.3%, 10.5% vs. 11.8%, 40.5% vs. 35.7%, respectively) between two groups. In addition, neonatal outcomes were similar in both the groups as well.

Conclusion

Our study demonstrated that the AOA using ionomycin 1 h after ICSI did not bring benefits to the early or late development of embryos derived from patients with a history of embryo developmental problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Stricker SA (1999) Comparative biology of calcium signaling during fertilization and egg activation in animals. Dev Biol 211(2):157–176. https://doi.org/10.1006/dbio.1999.9340

    Article  CAS  PubMed  Google Scholar 

  2. Kashir J, Heindryckx B, Jones C, De Sutter P, Parrington J, Coward K (2010) Oocyte activation, phospholipase C zeta and human infertility. Hum Reprod Update 16(6):690–703. https://doi.org/10.1093/humupd/dmq018

    Article  CAS  PubMed  Google Scholar 

  3. Ramadan WM, Kashir J, Jones C, Coward K (2012) Oocyte activation and phospholipase C zeta (PLCzeta): diagnostic and therapeutic implications for assisted reproductive technology. Cell Commun Signal 10(1):12. https://doi.org/10.1186/1478-811X-10-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ebner T, Moser M, Sommergruber M, Jesacher K, Tews G (2004) Complete oocyte activation failure after ICSI can be overcome by a modified injection technique. Hum Reprod 19(8):1837–1841. https://doi.org/10.1093/humrep/deh325

    Article  CAS  PubMed  Google Scholar 

  5. Yanagida K, Katayose H, Yazawa H, Kimura Y, Sato A, Yanagimachi H et al (1999) Successful fertilization and pregnancy following ICSI and electrical oocyte activation. Hum Reprod 14(5):1307–1311. https://doi.org/10.1093/humrep/14.5.1307

    Article  CAS  PubMed  Google Scholar 

  6. Chi HJ, Koo JJ, Song SJ, Lee JY, Chang SS (2004) Successful fertilization and pregnancy after intracytoplasmic sperm injection and oocyte activation with calcium ionophore in a normozoospermic patient with extremely low fertilization rates in intracytoplasmic sperm injection cycles. Fertil Steril 82(2):475–477. https://doi.org/10.1016/j.fertnstert.2004.01.038

    Article  PubMed  Google Scholar 

  7. Yanagida K, Morozumi K, Katayose H, Hayashi S, Sato A (2006) Successful pregnancy after ICSI with strontium oocyte activation in low rates of fertilization. Reprod Biomed Online 13(6):801–806. https://doi.org/10.1016/s1472-6483(10)61027-9

    Article  CAS  PubMed  Google Scholar 

  8. Vanden Meerschaut F, Nikiforaki D, Heindryckx B, De Sutter P (2014) Assisted oocyte activation following ICSI fertilization failure. Reprod Biomed Online 28(5):560–571. https://doi.org/10.1016/j.rbmo.2014.01.008

    Article  PubMed  Google Scholar 

  9. Bonte D, Ferrer-Buitrago M, Dhaenens L, Popovic M, Thys V, De Croo I et al (2019) Assisted oocyte activation significantly increases fertilization and pregnancy outcome in patients with low and total failed fertilization after intracytoplasmic sperm injection: a 17-year retrospective study. Fertil Steril 112(2):266–274. https://doi.org/10.1016/j.fertnstert.2019.04.006

    Article  PubMed  Google Scholar 

  10. Li J, Zheng X, Lian Y, Li M, Lin S, Zhuang X et al (2019) Artificial oocyte activation improves cycles with prospects of ICSI fertilization failure: a sibling oocyte control study. Reprod Biomed Online 39(2):199–204. https://doi.org/10.1016/j.rbmo.2019.03.216

    Article  PubMed  Google Scholar 

  11. Kang HJ, Lee SH, Park YS, Lim CK, Ko DS, Yang KM et al (2015) Artificial oocyte activation in intracytoplasmic sperm injection cycles using testicular sperm in human in vitro fertilization. Clin Exp Reprod Med 42(2):45–50. https://doi.org/10.5653/cerm.2015.42.2.45

    Article  PubMed  PubMed Central  Google Scholar 

  12. Berridge MJ, Bootman MD, Lipp P (1998) Calcium–a life and death signal. Nature 395(6703):645–648. https://doi.org/10.1038/27094

    Article  CAS  PubMed  Google Scholar 

  13. Berridge MJ (1995) Calcium signalling and cell proliferation. BioEssays 17(6):491–500. https://doi.org/10.1002/bies.950170605

    Article  CAS  PubMed  Google Scholar 

  14. Wong R, Hadjiyanni I, Wei HC, Polevoy G, McBride R, Sem KP et al (2005) PIP2 hydrolysis and calcium release are required for cytokinesis in Drosophila spermatocytes. Curr Biol 15(15):1401–1406. https://doi.org/10.1016/j.cub.2005.06.060

    Article  CAS  PubMed  Google Scholar 

  15. Ebner T, Oppelt P, Wober M, Staples P, Mayer RB, Sonnleitner U et al (2015) Treatment with Ca2+ ionophore improves embryo development and outcome in cases with previous developmental problems: a prospective multicenter study. Hum Reprod 30(1):97–102. https://doi.org/10.1093/humrep/deu285

    Article  CAS  PubMed  Google Scholar 

  16. Santella L, Dale B (2015) Assisted yes, but where do we draw the line? Reprod Biomed Online 31(4):476–478. https://doi.org/10.1016/j.rbmo.2015.06.013

    Article  PubMed  Google Scholar 

  17. Chen C, Sun T, Yin M, Yan Z, Yu W, Long H et al (2020) Ionomycin induced mouse oocyte activation can disrupt preimplantation embryo development through increased reactive oxygen species reaction and DNA damage. Mol Hum Reprod. https://doi.org/10.1093/molehr/gaaa056

    Article  PubMed  Google Scholar 

  18. Aydinuraz B, Dirican EK, Olgan S, Aksunger O, Erturk OK (2016) Artificial oocyte activation after intracytoplasmic morphologically selected sperm injection: A prospective randomized sibling oocyte study. Hum Fertil (Camb) 19(4):282–288. https://doi.org/10.1080/14647273.2016.1240374

    Article  CAS  Google Scholar 

  19. Vanden Meerschaut F, Nikiforaki D, De Gheselle S, Dullaerts V, Van den Abbeel E, Gerris J et al (2012) Assisted oocyte activation is not beneficial for all patients with a suspected oocyte-related activation deficiency. Hum Reprod 27(7):1977–1984. https://doi.org/10.1093/humrep/des097

    Article  CAS  PubMed  Google Scholar 

  20. Chen H, Wang Y, Lyu Q, Ai A, Fu Y, Tian H et al (2015) Comparison of live-birth defects after luteal-phase ovarian stimulation vs conventional ovarian stimulation for in vitro fertilization and vitrified embryo transfer cycles. Fertil Steril 103(5):1194–1201. https://doi.org/10.1016/j.fertnstert.2015.02.020

    Article  CAS  PubMed  Google Scholar 

  21. Alpha Scientists in Reproductive M, Embryology ESIGo (2011) The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Hum Reprod 26(6):1270–1283. https://doi.org/10.1093/humrep/der037

    Article  Google Scholar 

  22. Tsai YC, Chung MT, Sung YH, Tsai TF, Tsai YT, Lin LY (2002) Clinical value of early cleavage embryo. Int J Gynaecol Obstet 76(3):293–297. https://doi.org/10.1016/s0020-7292(01)00591-4

    Article  CAS  PubMed  Google Scholar 

  23. Li B, Zhou Y, Yan Z, Li M, Xue S, Cai R et al (2019) Pregnancy and neonatal outcomes of artificial oocyte activation in patients undergoing frozen-thawed embryo transfer: a 6-year population-based retrospective study. Arch Gynecol Obstet 300(4):1083–1092. https://doi.org/10.1007/s00404-019-05298-3

    Article  CAS  PubMed  Google Scholar 

  24. Ducibella T, Huneau D, Angelichio E, Xu Z, Schultz RM, Kopf GS et al (2002) Egg-to-embryo transition is driven by differential responses to Ca(2+) oscillation number. Dev Biol 250(2):280–291

    Article  CAS  PubMed  Google Scholar 

  25. Ducibella T, Fissore R (2008) The roles of Ca2+, downstream protein kinases, and oscillatory signaling in regulating fertilization and the activation of development. Dev Biol 315(2):257–279. https://doi.org/10.1016/j.ydbio.2007.12.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ozil JP, Banrezes B, Toth S, Pan H, Schultz RM (2006) Ca2+ oscillatory pattern in fertilized mouse eggs affects gene expression and development to term. Dev Biol 300(2):534–544. https://doi.org/10.1016/j.ydbio.2006.08.041

    Article  CAS  PubMed  Google Scholar 

  27. Rogers NT, Halet G, Piao Y, Carroll J, Ko MS, Swann K (2006) The absence of a Ca(2+) signal during mouse egg activation can affect parthenogenetic preimplantation development, gene expression patterns, and blastocyst quality. Reproduction 132(1):45–57. https://doi.org/10.1530/rep.1.01059

    Article  CAS  PubMed  Google Scholar 

  28. Montag M, Koster M, van der Ven K, Bohlen U, van der Ven H (2012) The benefit of artificial oocyte activation is dependent on the fertilization rate in a previous treatment cycle. Reprod Biomed Online 24(5):521–526. https://doi.org/10.1016/j.rbmo.2012.02.002

    Article  PubMed  Google Scholar 

  29. Yoon HJ, Bae IH, Kim HJ, Jang JM, Hur YS, Kim HK et al (2013) Analysis of clinical outcomes with respect to spermatozoan origin after artificial oocyte activation with a calcium ionophore. J Assist Reprod Genet 30(12):1569–1575. https://doi.org/10.1007/s10815-013-0110-2

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mateizel I, Verheyen G, Van de Velde H, Tournaye H, Belva F (2018) Obstetric and neonatal outcome following ICSI with assisted oocyte activation by calcium ionophore treatment. J Assist Reprod Genet 35(6):1005–1010. https://doi.org/10.1007/s10815-018-1124-6

    Article  PubMed  PubMed Central  Google Scholar 

  31. D’Haeseleer E, Vanden Meerschaut F, Bettens K, Luyten A, Gysels H, Thienpont Y et al (2014) Language development of children born following intracytoplasmic sperm injection (ICSI) combined with assisted oocyte activation (AOA). Int J Lang Commun Disord 49(6):702–709. https://doi.org/10.1111/1460-6984.12100

    Article  PubMed  Google Scholar 

  32. Vanden Meerschaut F, D’Haeseleer E, Gysels H, Thienpont Y, Dewitte G, Heindryckx B et al (2014) Neonatal and neurodevelopmental outcome of children aged 3–10 years born following assisted oocyte activation. Reprod Biomed Online 28(1):54–63. https://doi.org/10.1016/j.rbmo.2013.07.013

    Article  PubMed  Google Scholar 

  33. Lu Y, Bonte D, Ferrer-Buitrago M, Popovic M, Neupane J, Van der Jeught M et al (2018) Culture conditions affect Ca(2+) release in artificially activated mouse and human oocytes. Reprod Fertil Dev 30(7):991–1001. https://doi.org/10.1071/RD17145

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the staff of the Department of Assisted Reproduction in Shanghai Ninth People’s Hospital for their contribution.

Funding

This study was funded by the National Nature Science Foundation of China (Grant numbers: 81701523, 81771649, 81871163, 81971448).

Author information

Authors and Affiliations

Authors

Contributions

B.L., Z.Y. and Q.F.L. supervised the entire study, including the procedures, conception, design and completion. M.R.Y., M.H.L. and W.Z.L. contributed the data analysis and drafted the article. L.W., Z.G.Y., J.L.Z. and J.O.Y. were responsible for the collection of data. B.L., Z.Y. and M.R.Y. participated in the interpretation of the study data and in revisions to the article.

Corresponding authors

Correspondence to Qifeng Lyu, Zheng Yan or Bin Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This study was approved by the Ethics Committee of Shanghai Ninth People’s Hospital affiliated to Shanghai Jiao Tong University School of Medicine.

Informed consent

All enrolled patients were informed of the application of AOA technique and wrote informed consents before the treatment cycles.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, M., Li, M., Li, W. et al. Efficacy of artificial oocyte activation in patients with embryo developmental problems: a sibling oocyte control study. Arch Gynecol Obstet 305, 1225–1231 (2022). https://doi.org/10.1007/s00404-021-06329-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-021-06329-8

Keywords

Navigation