Skip to main content

Advertisement

Log in

Serum uric acid levels associated with biochemical parameters linked to preeclampsia severity and to adverse perinatal outcomes

  • General Gynecology
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Aims

Evaluating the association between serum uric acid levels and biochemical parameters linked to preeclampsia (PE) severity and to adverse perinatal outcomes.

Methods

Cross-sectional study. Information about gestational and biochemical parameters were collected before delivery, whereas perinatal outcomes were observed after it. Pregnant women were divided into hyperuricemia—HU (uric acid ≥ 6 mg/dL) or normouricemia (uric acid, 2.6–5.9 mg/dL) groups. Poisson regression models (prevalence ratio—PR; 95% confidence interval—95% CI), multinomial logistic regression (odds ratio—OR; 95% CI), and Pearson's correlation (correlation coefficient—r) were applied by taking into consideration p < 0.05 as significance level.

Results

The total sample comprised 267 pregnant women with PE. HU was observed in 25.8% of patients; it was associated with black pregnant women (p = 0.014) and with primiparity (p = 0.007). Uric acid levels were higher in early PE cases than in late PE cases (p = 0.013); however, there was no significant difference between mild and severe PE cases (p = 0.121). Uric acid recorded a positive correlation to urea (p < 0.001), creatinine (p = 0.002), glutamic-oxaloacetic transaminase (p < 0.001), glutamic-pyruvic transaminase (p = 0.005), ferritin (p = 0.002) and globulin (p = 0.002); as well as negative correlation to platelets (p = 0.035), lactic dehydrogenase (p = 0.039) and albumin (p > 0.001). HU was a factor associated with cesarean delivery (p = 0.030), prematurity (p = 0.001), low birth weight (p < 0.001) and small for gestational age (p = 0.020).

Conclusion

High serum uric acid levels were associated with early-onset PE. Maternal features were correlated to biochemical parameters linked to PE severity and to adverse perinatal outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Li X, Zhang W, Lin J et al (2020) Hypertensive disorders of pregnancy and risks of adverse pregnancy outcomes: a retrospective cohort study of 2368 patients. J Hum Hypertens. https://doi.org/10.1038/s41371-020-0312-x.10.1038/s41371-020-0312-x

    Article  PubMed  PubMed Central  Google Scholar 

  2. Abalos E, Cuesta C, Grosso AL et al (2013) Global and regional estimates of preeclampsia and eclampsia: a systematic review. Eur J Obstet Gynecol Reprod Biol 170:1–7. https://doi.org/10.1016/j.ejogrb.2013.05.005

    Article  PubMed  Google Scholar 

  3. Brown MA, Magee LA, Kenny LC et al (2018) International Society for the Study of Hypertension in Pregnancy (ISSHP). Hypertensive Disorders of Pregnancy: ISSHP Classification, Diagnosis, and Management Recommendations for International Practice. Hypertension 72(1):24–43. https://doi.org/10.1016/j.preghy.2018.05.004

    Article  CAS  PubMed  Google Scholar 

  4. Matias ML, Gomes VJ, Veiga MR et al (2019) Silibinin downregulates the NF-κB pathway and NLRP1/NLRP3 Inflammasomes in monocytes from pregnant women with preeclampsia. Molecules 24:1548. https://doi.org/10.3390/molecules24081548

    Article  CAS  PubMed Central  Google Scholar 

  5. Mulla MJ, Myrtolli K, Potter J et al (2011) Uric acid induces trophoblast IL-1β production via the inflammasome: implications for the pathogenesis of preeclampsia. Am J Reprod Immunol 65:542–548. https://doi.org/10.1111/j.1600-0897.2010.00960.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Uyar I, Kurt S, Demirtas Ö et al (2015) The value of uterine artery Doppler and NT-proBNP levels in the second trimester to predict preeclampsia. Arch Gynecol Obstet 291:1253–1258. https://doi.org/10.1007/s00404-014-3563-3

    Article  CAS  PubMed  Google Scholar 

  7. Ukah UV, Payne B, Lee T et al (2017) External validation of the fullpiers model for predicting adverse maternal outcomes in pregnancy hypertension in low- and middle-income countries. Hypertension 69:4705–4711. https://doi.org/10.1161/HYPERTENSIONAHA.116.08706

    Article  CAS  Google Scholar 

  8. Almeida ST, Katz L, Coutinho I, Amorim MMR (2017) Validation of fullPIERS model for prediction of adverse outcomes among women with severe pre-eclampsia. Int J Gynaecol Obstet 138:142–147. https://doi.org/10.1002/ijgo.12197

    Article  CAS  PubMed  Google Scholar 

  9. Huhn EA, Hoffmann I, Martinez TB et al (2020) Maternal serum glycosylated fibronectin as a short-term predictor of preeclampsia: a prospective cohort study. BMC Pregnancy Childbirth 20:128. https://doi.org/10.1186/s12884-020-2809-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sunjaya AF, Sunjaya AP (2019) Evaluation of serum biomarkers and other diagnostic modalities for early diagnosis of preeclampsia. J Fam Reprod Health. 13:56–69. https://doi.org/10.18502/jfrh.v13i2.1910

    Article  Google Scholar 

  11. Kat AC, Hirst J, Woodward M, Kennedy S, Peters SA (2019) Prediction models for preeclampsia: a systematic review. Pregnancy Hypertens 16:48–66. https://doi.org/10.1016/j.preghy.2019.03.005

    Article  PubMed  Google Scholar 

  12. Huluta I, Panaitescu AM (2018) Prediction of preeclampsia developing at term. Ginekol Pol 89:217–220. https://doi.org/10.5603/GP.a2018.0037

    Article  PubMed  Google Scholar 

  13. Kumar N, Singh AK (2019) Maternal serum uric acid and calcium as predictors of hypertensive disorder of pregnancy: a case control study. Taiwan J Obstet Gynecol 58:244–250. https://doi.org/10.1016/j.tjog.2019.01.014

    Article  PubMed  Google Scholar 

  14. Silva JVF, Ferreira RC, Tenório MB et al (2020) (2020) Hyperferritinemia worsens the perinatal outcomes of conceptions of pregnancies with preeclampsia. Pregnancy Hypertens 19:233–238. https://doi.org/10.1016/j.preghy.2019.11.004

    Article  PubMed  Google Scholar 

  15. Paula LG, Pinheiro CBE, Hentschke MR et al (2019) Increased proteinuria and uric acid levels are associated with eclamptic crisis. Pregnancy Hypertens. 15:93–97. https://doi.org/10.1016/j.preghy.2018.12.003

    Article  PubMed  Google Scholar 

  16. Jeevitha J (2017) Serum uric acid as a predictor of pre-eclampsia. Univ J Surg Surg Spec 2(7).

  17. Medjedovic E, Suljevic A, Iglica A, Rama A, Mahmutbegovic E, Muftic A, Dzihic E (2019) Uric acid values along with Doppler sonography findings as a tool for preeclampsia screening. Med Arch. 3(6):408–411

    Article  Google Scholar 

  18. Giorgi VS, Witkin SS, Bannwart-Castro CF (2016) Elevated circulatingadenosine deaminase activity in women with preeclampsia: association with pro-inflammatory cytokine production and uric acid levels. Pregnancy Hypertens 6:400–405. https://doi.org/10.1016/j.preghy.2016.09.004

    Article  PubMed  Google Scholar 

  19. Peraçoli MT, Bannwart CF, Cristofalo R et al (2011) Increased reactive oxygen species and tumor necrosis factor-alpha production by monocytes are associated with elevated levels of uric acid in pre-eclamptic women. Am J Reprod Immunol 66:460–467. https://doi.org/10.1111/j.1600-0897.2011.01016.x

    Article  CAS  PubMed  Google Scholar 

  20. Koopmans CM, van Pampus MG, Groen H et al (2009) Accuracy of serum uric acid as a predictive test for maternal complications in pre-eclampsia: bivariate meta-analysis and decision analysis. Eur J Obstet Gynecol Reprod Biol 146:8–14. https://doi.org/10.1016/j.ejogrb.2009.05.014

    Article  CAS  PubMed  Google Scholar 

  21. Chen Q, Lau S, Tong M et al (2016) Serum uric acid may not be involved in the development of preeclampsia. J Hum Hypertens 30:136–140. https://doi.org/10.1038/jhh.2015.47

    Article  CAS  PubMed  Google Scholar 

  22. Atalah E, Castillo C, Castro R, Aldea A (1997) Propuesta de un nuevo estándar de evaluación nutricional en embarazadas [Proposal of a new standard for the nutritional assessment of pregnant women]. Rev Med Chil 125(12):1429–1436

    CAS  PubMed  Google Scholar 

  23. Rasmussen KM, Yaktine AL (2009) Institute of Medicine (US) and National Research Council (US) Committee to Reexamine IOM Pregnancy Weight Guidelines, eds. Weight Gain During Pregnancy: Reexamining the Guidelines. Washington (DC): National Academies Press (US). https://doi.org/10.17226/12584.

  24. American Academy of Pediatrics (2006) Committee on Fetus and Newborn, American College of Obstetricians and Gynecologists. Committee on Obstetric Practice Pediatrics 117(4):1444–1447. https://doi.org/10.1542/peds.2006-0325

    Article  Google Scholar 

  25. Battaglia FC, Lubchenco LO (1967) A practical classification of newborn infants by weight and gestational age. J Pediatr 71(2):159–163. https://doi.org/10.1016/s0022-3476(67)80066-0

    Article  CAS  PubMed  Google Scholar 

  26. Villar J, Cheikh Ismail L, Victora CG et al (2014) International standards for newborn weight, length, and head circumference by gestational age and sex: the Newborn Cross-Sectional Study of the INTERGROWTH-21st Project. Lancet 384(9946):857–868. https://doi.org/10.1016/S0140-6736(14)60932-6

    Article  PubMed  Google Scholar 

  27. World Health Organization (WHO) (2014). Global nutrition targets 2025: low birth weight policy brief [homepage on the Internet]. Geneva: WHO. http://apps.who.int/iris/bitstream/10665/149020/2/WHO_NMH_NHD_14.5_eng.pdf?ua

  28. Barros AJ, Hirakata VN (2003) Alternatives for logistic regression in cross-sectional studies: an empirical comparison of models that directly estimate the prevalence ratio. BMC Med Res Methodol 3:21. https://doi.org/10.1186/1471-2288-3-21

    Article  PubMed  PubMed Central  Google Scholar 

  29. Schober P, Boer C, Schwarte LA (2018) Correlation coefficients: appropriate use and interpretation. Anesth Analg 126(5):1763–1768. https://doi.org/10.1213/ANE.0000000000002864

    Article  PubMed  Google Scholar 

  30. Martin AC, Brown MA (2010) Could uric acid have a pathogenic role in pre-eclampsia? Nat Rev Nephrol 6:744–748. https://doi.org/10.1038/nrneph.2010.125

    Article  CAS  PubMed  Google Scholar 

  31. Karabulut AB, Kafkasli A, Burak F, Gozukara EM (2005) Maternal and fetal plasma adenosine deaminase, xanthine oxidase and malondialdehyde levels in pre-eclampsia. Cell Biochem Funct 23:279–283. https://doi.org/10.1002/cbf.1152

    Article  CAS  PubMed  Google Scholar 

  32. Khaliq OP, Konoshita T, Moodley J, Naicker T (2018) The role of uric acid in preeclampsia: is uric acid a causative factor or a sign of preeclampsia? Curr Hypertens Rep 20(9):80. https://doi.org/10.1007/s11906-018-0878-7

    Article  CAS  PubMed  Google Scholar 

  33. Eastabrook G, Brown M, Sargent I (2011) The origins and end-organ consequence of pre-eclampsia. Best Pract Res Clin Obstet Gynaecol 25(4):435–447. https://doi.org/10.1016/j.bpobgyn.2011.01.005

    Article  PubMed  Google Scholar 

  34. Bellos I, Pergialiotis V, Loutradis D, Daskalakis G (2020) The prognostic role of serum uric acid levels in preeclampsia: a meta-analysis. J Clin Hypertens 22(5):826–834. https://doi.org/10.1111/jch.13865

    Article  CAS  Google Scholar 

  35. Premkumar A, Henry DE, Moghadassi M, Nakagawa S, Norton ME (2016) The interaction between maternal race/ethnicity and chronic hypertension on preterm birth. Am J Obstet Gynecol 215(6):787.e1-787.e8. https://doi.org/10.1016/j.ajog.2016.08.019

    Article  Google Scholar 

  36. Miller EC, Zambrano Espinoza MD, Huang Y et al (2020) Maternal race/ethnicity, hypertension, and risk for stroke during delivery admission. J Am Heart Assoc 9(3):e014775. https://doi.org/10.1161/JAHA.119.014775

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ye C, Ruan Y, Zou L et al (2014) The 2011 survey on hypertensive disorders of pregnancy (HDP) in China: prevalence, risk factors, complications, pregnancy and perinatal outcomes. PLoS ONE 9(6):e100180. https://doi.org/10.1371/journal.pone.0100180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li XL, Guo PL, Xue Y, Gou WL, Tong M, Chen Q (2016) An analysis of the differences between early and late preeclampsia with severe hypertension. Pregnancy Hypertens 6(1):47–52. https://doi.org/10.1016/j.preghy.2015.12.003

    Article  PubMed  Google Scholar 

  39. Maynard SE, Min JY, Merchan J et al (2003) Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest 111(5):649–658. https://doi.org/10.1172/JCI17189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Brazilian Society of Cardiology (2016) VII Brazilian guideline for arterial hypertension. Arq Bras Cardiol 10(3 supl 3):1–83. https://doi.org/10.5935/abc.20160140

    Article  Google Scholar 

  41. Yalamati P, Bhongir AV, Betha K, Verma R, Dandge S (2015) Relationship of serum uric acid, serum creatinine and serum cystatin C with maternal and fetal outcomes in rural Indian pregnant women. Int J Reprod Contracept Obstet Gynecol 4(5):1505–1510. https://doi.org/10.18203/2320-1770.ijrcog20150737

    Article  PubMed  PubMed Central  Google Scholar 

  42. Williams KP, Galerneau F (2002) The role of serum uric acid as a prognostic indicator of the severity of maternal and fetal complications in hypertensive pregnancies. J Obstet Gynaecol Can 24(8):628–632. https://doi.org/10.1016/s1701-2163(16)30193-1

    Article  PubMed  Google Scholar 

  43. Kreepala C, Luangphiphat W, Villarroel A, Kitporntheranunt M, Wattanavaekin K, Piyajarawong T (2018) Effect of magnesium on glomerular filtration rate and recovery of hypertension in women with severe preeclampsia. Nephron 138(1):35–41. https://doi.org/10.1159/000481463

    Article  CAS  PubMed  Google Scholar 

  44. Jahnen-Dechent W, Ketteler M (2012) Magnesium basics. Clin Kidney J 5(Suppl 1):i3–i14. https://doi.org/10.1093/ndtplus/sfr163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Germolec DR, Shipkowski KA, Frawley RP, Evans E (2018) Markers of Inflammation. Methods Mol Biol 1803:57–79. https://doi.org/10.1007/978-1-4939-8549-4_5

    Article  CAS  PubMed  Google Scholar 

  46. Vogel JP, Chawanpaiboon S, Moller AB, Watananirun K, Bonet M, Lumbiganon P (2018) The global epidemiology of preterm birth. Best Pract Res Clin Obstet Gynaecol 52:3–12. https://doi.org/10.1016/j.bpobgyn.2018.04.003

    Article  PubMed  Google Scholar 

  47. Mendonça ELSS, Macena LM, Bueno NB, Oliveira ACM, Mello CS (2020) Premature birth, low birth weight, small for gestational age and chronic non-communicable diseases in adult life: a systematic review with meta-analysis. Early Hum Dev 149:105154. https://doi.org/10.1016/j.earlhumdev.2020.105154

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the National Council for Scientific and Technological Development—CNPq and the Alagoas State Research Support Foundation—FAPEAL (PPSUS/CNPq/SESAU-AL/FAPEAL process 60030 000818/ 2016).

Funding

Research financed by the Research Program for the Brazilian Unified Health System—PPSUS.

Author information

Authors and Affiliations

Authors

Contributions

ELSSM: Conception of the study, data analysis and the writing of the article; JVFS: Conception and design of the study, and data Collection; CSM: Conception and design of the study, and critical review; ACMO: Conception and design of the study, data analysis, and critical review.

Corresponding author

Correspondence to Alane Cabral Menezes de Oliveira.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Mendonça, E.L.S.S., da Silva, J.V.F., Mello, C.S. et al. Serum uric acid levels associated with biochemical parameters linked to preeclampsia severity and to adverse perinatal outcomes. Arch Gynecol Obstet 305, 1453–1463 (2022). https://doi.org/10.1007/s00404-021-06313-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-021-06313-2

Keywords

Navigation