Skip to main content

Advertisement

Log in

Frequent DYSF rare variants/mutations in 152 Han Chinese samples with ovarian endometriosis

  • General Gynecology
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

Endometriosis is a common chronic gynecological disease greatly affecting women health. Prior studies have implicated that dysferlin (DYSF) aberration might be involved in the pathogenesis of ovarian endometriosis. In the present study, we explore the potential presence of DYSF mutations in a total of 152 Han Chinese samples with ovarian endometriosis.

Methods

We analyze the potential presence of DYSF mutations by direct DNA sequencing.

Results

A total of seven rare variants/mutations in the DYSF gene in 10 out of 152 samples (6.6%) were identified, including 5 rare variants and 2 novel mutations. For the 5 rare variants, p.R334W and p.G941S existed in 2 samples, p.R865W, p.R1173H and p.G1531S existed in single sample, respectively; for the two novel mutations, p.W352* and p.I1642F, they were identified in three patients. These rare variants/mutations were absent or existed at extremely low frequency either in our 1006 local control women without endometriosis, or in the China Metabolic Analytics Project (ChinaMAP) and Genome Aggregation Database (gnomAD) databases. Evolutionary conservation analysis results suggested that all of these rare variants/mutations were evolutionarily conserved among 11 vertebrate species from Human to Fox. Furthermore, in silico analysis results suggested these rare variants/mutations were disease-causing. Nevertheless, we find no significant association between DYSF rare variants/mutations and the clinical features in our patients. To our knowledge, this is the first report revealing frequent DYSF mutations in ovarian endometriosis.

Conclusion

We identified a high frequency of DYSF rare variants/mutations in ovarian endometriosis for the first time. This study suggests a new correlation between DYSF rare variants/mutations and ovarian endometriosis, implicating DYSF rare variants/mutations might be positively involved in the pathogenesis of ovarian endometriosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Yan Q, Huang C, Jiang Y et al (2018) Calpain7 impairs embryo implantation by downregulating β3-integrin expression via degradation of HOXA10. Cell Death Dis 9(3):291

    Article  Google Scholar 

  2. Vitale SG, Capriglione S, Peterlunger I et al (2018) The role of oxidative stress and membrane transport systems during endometriosis: a fresh look at a busy corner. Oxid Med Cell Longev 2018:7924021

    Article  Google Scholar 

  3. Maia LM, Rocha AL, Del Puerto HL et al (2018) Plasma urocortin-1 as a preoperative marker of endometriosis in symptomatic women. Gynecol Endocrinol 34(3):202–205

    Article  CAS  Google Scholar 

  4. Borghese B, Zondervan KT, Abrao MS et al (2017) Recent insights on the genetics and epigenetics of endometriosis. Clin Genet 91(2):254–264

    Article  CAS  Google Scholar 

  5. Barthélémy F, Defour A, Lévy N et al (2018) Muscle cells fix breaches by orchestrating a membrane repair ballet. J Neuromuscul Dis 5(1):21–28

    Article  Google Scholar 

  6. Han R, Frett EM, Levy JR et al (2010) Genetic ablation of complement C3 attenuates muscle pathology in dysferlin-deficient mice. J Clin Invest 120(12):4366–4374

    Article  CAS  Google Scholar 

  7. Chiu YH, Hornsey MA, Klinge L et al (2009) Attenuated muscle regeneration is a key factor in dysferlin-deficient muscular dystrophy. Hum Mol Genet 18(11):1976–1989

    Article  CAS  Google Scholar 

  8. Li L, Jing Z, Cheng L et al (2020) Compound heterozygous DYSF variants causing limb-girdle muscular dystrophy type 2B in a Chinese family. J Gene Med. 22(11):3272

    Google Scholar 

  9. Hu YY, Lian YJ, Xu HL et al (2018) Novel, de novo dysferlin gene mutations in a patient with Miyoshi myopathy. Neurosci Lett 664:107–109

    Article  CAS  Google Scholar 

  10. Schmidt WM, Uddin MH, Dysek S et al (2011) DNA damage, somatic aneuploidy, and malignant sarcoma susceptibility in muscular dystrophies. PLoS Genet. 7(4):1002042

    Article  Google Scholar 

  11. Hosur V, Kavirayani A, Riefler J et al (2012) Dystrophin and dysferlin double mutant mice: a novel model for rhabdomyosarcoma. Cancer Genet 205(5):232–241

    Article  CAS  Google Scholar 

  12. Yin J, Zhang Y, Zhang Y et al (2018) Reporting on two novel fusions, DYSF-ALK and ITGAV-ALK, coexisting in one patient with adenocarcinoma of lung, sensitive to crizotinib. J Thorac Oncol 13(3):e43–e45

    Article  Google Scholar 

  13. Tang H, Wei P, Chang P et al (2017) Genetic polymorphisms associated with pancreatic cancer survival: a genome-wide association study. Int J Cancer 141(4):678–686

    Article  CAS  Google Scholar 

  14. Ha M, Jeong H, Roh JS et al (2019) DYSF expression in clear cell renal cell carcinoma: a retrospective study of 2 independent cohorts. Urol Oncol 37(10):735–741

    Article  CAS  Google Scholar 

  15. Jones S, Wang TL, Shih IM et al (2010) Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science 330(6001):228–231

    Article  CAS  Google Scholar 

  16. Bi M, Zhao S, Said JW et al (2016) Genomic characterization of sarcomatoid transformation in clear cell renal cell carcinoma. Proc Natl Acad Sci U S A 113(8):2170–2175

    Article  CAS  Google Scholar 

  17. Matsumura N, Mandai M, Okamoto T et al (2010) Sorafenib efficacy in ovarian clear cell carcinoma revealed by transcriptome profiling. Cancer Sci 101(12):2658–2663

    Article  CAS  Google Scholar 

  18. Mabuchi S, Kawase C, Altomare DA et al (2010) Vascular endothelial growth factor is a promising therapeutic target for the treatment of clear cell carcinoma of the ovary. Mol Cancer Ther 9(8):2411–2422

    Article  CAS  Google Scholar 

  19. Glasspool RM, McNeish IA (2013) Clear cell carcinoma of ovary and uterus. Curr Oncol Rep 15(6):566–572

    Article  CAS  Google Scholar 

  20. Anglesio MS, Papadopoulos N, Ayhan A (2017) Cancer-associated mutations in endometriosis without cancer. N Engl J Med 376(19):1835–1848

    Article  Google Scholar 

  21. Zou Y, Zhou JY, Guo JB et al (2018) The presence of KRAS, PPP2R1A and ARID1A mutations in 101 Chinese samples with ovarian endometriosis. Mutat Res 809:1–5

    Article  CAS  Google Scholar 

  22. Suda K, Diaz LA, Yoshihara K et al (2020) Clonal lineage from normal endometrium to ovarian clear cell carcinoma through ovarian endometriosis. Cancer Sci 111(8):3000–3009

    Article  CAS  Google Scholar 

  23. Tomohiro M, Matsumoto T, Miura R et al (2019) Alterations in β-catenin, microsatellite instability, and HNF-1β levels are independently associated with ovarian endometriosis-associated tumorigenesis. Hum Pathol 89:10–23

    Article  CAS  Google Scholar 

  24. Zou Y, Zhou JY, Guo JB et al (2019) Mutation analysis of ZP1, ZP2, ZP3 and ZP4 genes in 152 Han Chinese samples with ovarian endometriosis. Mutat Res 813:46–50

    Article  CAS  Google Scholar 

  25. Tamura K, Dudley J, Nei M et al (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol. 24(8):1596–1599

    Article  CAS  Google Scholar 

  26. Ng PC, Henikoff S (2003) SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res 31(13):3812–3814

    Article  CAS  Google Scholar 

  27. Adzhubei I, Jordan DM, Sunyaev SR (2013) Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet. Chapter 7:Unit7.20

  28. Schwarz JM, Cooper DN, Schuelke M et al (2014) MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods 11(4):361–362

    Article  CAS  Google Scholar 

  29. Richards S, Aziz N, Bale S et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17(5):405–424

    Article  Google Scholar 

  30. Hornsey MA, Laval SH, Barresi R et al (2013) Muscular dystrophy in dysferlin-deficient mouse models. Neuromuscul Disord 23(5):377–387

    Article  Google Scholar 

  31. Hofhuis J, Bersch K, Büssenschütt R et al (2017) Dysferlin mediates membrane tubulation and links T-tubule biogenesis to muscular dystrophy. J Cell Sci 130(5):841–852

    CAS  PubMed  Google Scholar 

  32. Fernández G, Arias-Bravo G, Bevilacqua JA et al (2020) Myofibers deficient in connexins 43 and 45 expression protect mice from skeletal muscle and systemic dysfunction promoted by a dysferlin mutation. Biochim Biophys Acta Mol Basis Dis. 1866(8):165800

    Article  Google Scholar 

  33. Lee JA, Maruyama R, Duddy W et al (2018) Identification of novel antisense-mediated exon skipping targets in DYSF for therapeutic treatment of dysferlinopathy. Mol Ther Nucleic Acids 13:596–604

    Article  CAS  Google Scholar 

  34. Patel NJ, Dyke KW, Espinoza LR (2017) Limb-girdle muscular dystrophy 2B and miyoshi presentations of dysferlinopathy. Am J Med Sci 353(5):484–491

    Article  Google Scholar 

  35. Nguyen K, Bassez G, Krahn M et al (2007) Phenotypic study in 40 patients with dysferlin gene mutations: high frequency of atypical phenotypes. Arch Neurol 64(8):1176–1182

    Article  Google Scholar 

  36. Mabrouk M, Raimondo D, Forno SD et al (2018) Pelvic floor muscle assessment on three- and four-dimensional transperineal ultrasound in women with ovarian endometriosis with or without retroperitoneal infiltration: a step towards complete functional assessment. Ultrasound Obstet Gynecol 52(2):265–268

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the sample donors who involved in the present study.

Funding

This study was supported by China Postdoctoral Science Foundation (No. 2018M642594), Jiangxi Province Postdoctoral Science Foundation (2018KY21), and the Science Foundation of Jiangxi Province (No. 20181BBG70018).

Author information

Authors and Affiliations

Authors

Contributions

LS Peng: investigation; ZM Li: sample collection; G Chen: investigation; FY Liu: investigation; Y Luo: data analysis; JB Guo: sample collection; GD Gao: data analysis; YH Deng: sample collection; LX Xu: investigation; JY Zhou: writing, and editing; Y Zou: Methodology, manuscript revision.

Corresponding authors

Correspondence to Jiang-Yan Zhou or Yang Zou.

Ethics declarations

Conflict of interest

None.

Ethics approval

The Institutional Ethics Committee of Jiangxi Provincial Maternal and Child Health Hospital approved this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Li-Sha Peng and Zeng-Ming Li are the co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, LS., Li, ZM., Chen, G. et al. Frequent DYSF rare variants/mutations in 152 Han Chinese samples with ovarian endometriosis. Arch Gynecol Obstet 304, 671–677 (2021). https://doi.org/10.1007/s00404-021-06094-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-021-06094-8

Keywords

Navigation