Skip to main content
Log in

Opioid effect on the autonomic nervous system in a fetal sheep model

  • Maternal-Fetal Medicine
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

Opioid use during labour can interfere with cardiotocography patterns. Heart rate variability indirectly reflects a fluctuation in the autonomic nervous system and can be monitored through time and spectral analyses. This experimental study aimed to evaluate the impact of nalbuphine administration on the gasometric, cardiovascular, and autonomic nervous system responses in fetal sheep.

Methods

This was an experimental study on chronically instrumented sheep fetuses (surgery at 128 ± 2 days of gestational age, term = 145 days). The model was based on a maternal intravenous bolus injection of nalbuphine, a semisynthetic opioid used as an analgesic during delivery. Fetal gasometric parameters (pH, pO2, pCO2, and lactates), hemodynamic parameters (fetal heart rate and mean arterial pressure), and autonomic nervous system tone (short-term and long-term variation, low-frequency domain, high-frequency domain, and fetal stress index) were recorded. Data obtained at 30–60 min after nalbuphine injection were compared to those recorded at baseline.

Results

Eleven experiments were performed. Fetal heart rate, mean arterial pressure, and activities at low and high frequencies were stable after injection. Short-term variation decreased at T30 min (P = 0.02), and long-term variation decreased at T60 min (P = 0.02). Fetal stress index gradually increased and reached significance at T60 min (P = 0.02). Fetal gasometric parameters and lactate levels remained stable.

Conclusion

Maternal nalbuphine use during labour may lead to fetal heart changes that are caused by the effect of opioid on the autonomic nervous system; these fluctuations do not reflect acidosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Anderson D (2011) A review of systemic opioids commonly used for labor pain relief [published correction appears in J Midwifery Womens Health. 2011 Jul-Aug;56:411–8]. J Midwifery Womens Health 56:222–239

    Article  Google Scholar 

  2. Ducloy-Bouthors AS, Keita-Meyer H, Bouvet L, Bonnin M, Morau E (2020) Accouchement normal: accompagnement de la physiologie et interventions médicales. Recommandations de la Haute Autorité de Santé (HAS) avec la collaboration du Collège National des Gynécologues Obstétriciens Français (CNGOF) et du Collège National des Sages-Femmes de France (CNSF): Bien être maternel et prise en charge médicamenteuse de la douleur [Normal delivery. Guidelines of the French National Authority for Health (HAS) with the collaboration of the French College of Gynaecologists and Obstetricians (CNGOF) and the French College of Midwives (CNSF): Mother's wellbeing and regional or systemic analgesia for labor]. Gynecol Obstet Fertil Senol 48:891–906

    PubMed  Google Scholar 

  3. Jansson LM, Velez M, McConnell K et al (2017) Maternal buprenorphine treatment and fetal neurobehavioral development. Am J Obstet Gynecol 216:529.e1-529.e8

    Article  CAS  Google Scholar 

  4. Romano M, Iuppariello L, Ponsiglione AM, Improta G, Bifulco P, Cesarelli M (2016) Frequency and time domainanalysis of foetal heart rate variability with traditional indexes:a critical survey. Comput Math Methods Med 2016:1–12

    Article  Google Scholar 

  5. Chaffin DG, Goldberg CC, Reed KL (1991) The dimension of chaos in the fetal heart rate. Am J Obstet Gynecol 165:1425–1429

    Article  CAS  Google Scholar 

  6. Shaw CJ, Allison BJ, Itani N et al (2018) Altered autonomic control of heart rate variability in the chronically hypoxic fetus. J Physiol 596:6105–6119

    Article  CAS  Google Scholar 

  7. Heart rate variability (1997) Standards of measurement, physiological interpretation, and clinical use. Task force of the European society of cardiology and the North American society of pacing and electrophysiology. Eur Heart J 17:354–381

    Google Scholar 

  8. Van Laar JOEH, Porath MM, Peters CHL, Oei SG (2008) Spectral analysis of fetal heart rate variability for fetal surveillance: review of the literature. Acta Obstet Gynecol Scand 87:300–306

    Article  Google Scholar 

  9. Van Laar JOEH, Peters CHL, Vullings R, Houterman S, Bergmans JWM, Oei SG (2010) Fetal autonomic response to severe acidaemia during labour. BJOG Int J Obstet Gynaecol 117:429–437

    Article  Google Scholar 

  10. Garabedian C, Champion C, Servan-Schreiber E et al (2017) A new analysis of heart rate variability in the assessment of fetal parasympathetic activity: an experimental study in a fetal sheep model. PLoS ONE 12:e0180653

    Article  CAS  Google Scholar 

  11. Ghesquière L, De Jonckheere J, Drumez E et al (2019) Parasympathetic nervous system response to acidosis: evaluation in an experimental fetal sheep model. Acta Obstet Gynecol Scand 98:433–439

    Article  Google Scholar 

  12. Jeanne M, Logier R, De Jonckheere J, Tavernier B (2009) Heart rate variability during total intravenous anesthesia: effects of nociception and analgesia. Auton Neurosci Basic Clin 147:91–96

    Article  CAS  Google Scholar 

  13. Giannina G, Guzman ER, Lai YL, Lake MF, Cernadas M, Vintzileos AM (1995) Comparison of the effects of meperidine and nalbuphine on intrapartum fetal heart rate tracings. Obstet Gynecol 86:441–445

    Article  CAS  Google Scholar 

  14. Frasch MG, Grasch MG, Frasch MG et al (2009) Measures of acidosis with repetitive umbilical cord occlusions leading to fetal asphyxia in the near-term ovine fetus. Am J Obstet Gynecol 200(200):e1-7

    Google Scholar 

  15. Houfflin Debarge V, Bresson S, Jaillard S et al (2005) Development of a new model to investigate the fetal nociceptive pathways. Fetal Diagn Ther 20:415–419

    Article  Google Scholar 

  16. Wassink G, Bennet L, Booth LC et al (2007) The ontogeny of hemodynamic responses to prolonged umbilical cord occlusion in fetal sheep. J Appl Physiol 103:1311–1317

    Article  Google Scholar 

  17. Bennet L, Westgate JA, Liu Y-CJ, Wassink G, Gunn AJ (2005) Fetal acidosis and hypotension during repeated umbilical cord occlusions are associated with enhanced chemoreflex responses in near-term fetal sheep. J Appl Physiol 99:1477–1482

    Article  Google Scholar 

  18. Garabedian C, Aubry E, Sharma D et al (2018) Exploring fetal response to acidosis in ewes: choosing an adequate experimental model. J Gynecol Obstet Hum Reprod 47:397–403

    Article  CAS  Google Scholar 

  19. De Jonckheere J, Logier R, Dassonneville A, Delmar G, Vasseur C (2005) PhysioTrace: an efficient toolkit for biomedical signal processing. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf 7:6739–6741

    Google Scholar 

  20. Dawes GS, Moulden M, Redman CW (1991) System 8000: computerized antenatal FHR analysis. J Perinat Med 19:47–51

    Article  CAS  Google Scholar 

  21. Shaw CJ, Allison BJ, Itani N, Botting KJ, Niu Y, Lees CC, Giussani DA (2018) Altered autonomic control of heart rate variability in the chronically hypoxic fetus. J Physiol 596:6105–6119

    Article  CAS  Google Scholar 

  22. Frasch MG, Müller T, Weiss C, Schwab K, Schubert H, Schwab M (2009) Heart rate variability analysis allows early asphyxia detection in ovine fetus. Reprod Sci 16:509–517

    Article  Google Scholar 

  23. Butruille L, De Jonckheere J, Marcilly R et al (2015) Development of a pain monitoring device focused on newborn infant applications: The NeoDoloris project. IRBM 36(2):80–85

    Article  Google Scholar 

  24. Nicolle E, Devillier P, Delanoy B, Durand C, Bessard G (1996) Therapeutic monitoring of nalbuphine: transplacental transfer and estimated pharmacokinetics in the neonate. Eur J Clin Pharmacol 49:485–489

    Article  CAS  Google Scholar 

  25. Martin LV, Jurand A (1992) The absence of teratogenic effects of some analgesics used in anaesthesia. Additional evidence from a mouse model. Anaesthesia 47:473–476

    Article  CAS  Google Scholar 

  26. Nezvalová-Henriksen K, Spigset O, Nordeng H (2011) Effects of codeine on pregnancy outcome: results from a large population-based cohort study. Eur J Clin Pharmacol 67:1253–1261

    Article  Google Scholar 

  27. Wilson SJ, Errick JK, Balkon J (1986) Pharmacokinetics of nalbuphine during parturition. Am J Obstet Gynecol 155:340–344

    Article  CAS  Google Scholar 

  28. Wilson CM, McClean E, Moore J, Dundee JW (1986) A double-blind comparison of intramuscular pethidine and nalbuphine in labour. Anaesthesia 41:1207–1213

    Article  CAS  Google Scholar 

  29. Holsey YS, Wu D, Soong Y, Omoniyi AT, Szeto HH (1999) Cardiovascular effects of a mu-selective opioid agonist (tyrosine-D-arginine-phenylalanine-lysine-NH2) in fetal sheep: sites and mechanisms of action. Am J Obstet Gynecol 180:1127–1130

    Article  CAS  Google Scholar 

  30. Sherer DM, Cooper EM, Spoor C, Serletti BL, Woods JR (1994) Resolution of marked intrapartum fetal tachycardia following intravenous nalbuphine hydrochloride. Am J Perinatol 11:367–368

    Article  CAS  Google Scholar 

  31. Guillonneau M, Jacqz-Aigrain E, de Crepy A, Zeggout H (1990) Perinatal adverse effects of nalbuphine given during parturition. Lancet Lond Engl 335:1588

    Article  CAS  Google Scholar 

  32. Szeto HH, Wu D, Cheng PY, Soong Y, Taylor CC, Yee J (1996) Cardiovascular and respiratory actions of U50,488H in the unanaesthetized ovine foetus. Eur J Pharmacol 297:77–82

    Article  CAS  Google Scholar 

  33. Cohen S, Parvizi N, Mulder EJ et al (2001) Effects of morphine and naloxone on fetal heart rate and movement in the pig. J Appl Physiol 90:1577–1583

    Article  CAS  Google Scholar 

  34. Kopecky EA, Ryan ML, Barrett JF et al (2000) Fetal response to maternally administered morphine. Am J Obstet Gynecol 183:424–430

    Article  CAS  Google Scholar 

  35. Garabedian C, Clermont-Hama Y, Sharma D et al (2018) Correlation of a new index reflecting the fluctuation of parasympathetic tone and fetal acidosis in an experimental study in a sheep model. PLoS ONE 13:e0190463

    Article  CAS  Google Scholar 

  36. Vicente-Sanchez A, Segura L, Pradhan AA (2016) The delta opioid receptor tool box. Neuroscience 338:145–159

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Editage (http://www.editage.cn) for English language editing of the manuscript.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

MR: protocol/project development, data collection or management, data analysis, manuscript writing/editing. CG: protocol/project development, manuscript writing/editing. EA: protocol/project development, data collection or management. DS: protocol/project development, data collection or management. LB: data analysis. LS: protocol/project development, data analysis, manuscript writing/editing. JDJ: protocol/project development, data analysis, manuscript writing/editing.

Corresponding author

Correspondence to Morgan Recher.

Ethics declarations

Conflict of interest

The authors do not have any conflicts of interest to disclose.

Ethics approval

All animal procedures and protocols used in this study were reviewed and approved by an Institutional Ethical Committee for Experimental Research (CEEA # 2016121312148878).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Recher, M., Garabedian, C., Aubry, E. et al. Opioid effect on the autonomic nervous system in a fetal sheep model. Arch Gynecol Obstet 304, 73–80 (2021). https://doi.org/10.1007/s00404-020-05917-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-020-05917-4

Keywords

Navigation