Skip to main content

Advertisement

Log in

Ovarian cancer stem cells: ready for prime time?

  • Review
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Introduction

The role of cancer stem cells (CSC) remains controversial and increasingly subject of investigation as a potential oncogenetic platform with promising therapeutic implications. Understanding the role of CSCs in a highly heterogeneous disease like epithelial ovarian cancer (EOC) may potentially lead to the better understanding of the oncogenetic and metastatic pathways of the disease, but also to develop novel strategies against its progression and platinum resistance.

Methods

We have performed a review of all relevant literature that addresses the oncogenetic potential of stem cells in EOC, their mechanisms, and the associated therapeutic targets.

Results

Cancer stem cells (CSCs) have been reported to be implicated not only in the development and pathways of intratumoral heterogeneity (ITH), but also potentially modulating the tumor microenvironment, leading to the selection of sub-clones resistant to chemotherapy. Furthermore, it appears that the enhanced DNA repair abilities of CSCs are connected with their endurance and resistance maintaining their genomic integrity during novel targeted treatments such as PARP inhibitors, allowing them to survive and causing disease relapse functioning as a tumor seeds.

Conclusions

It appears that CSCs play a major role in the underlying mechanisms of oncogenesis and development of relapse in EOC. Part of promising future plans would be to not only use them as therapeutic targets, but also extent their value on a preventative level through engineering mechanisms and prevention of EOC in its origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kreso A, Dick JE (2014) Evolution of the cancer stem cell model. Cell Stem Cell 14(3):275–291

    CAS  PubMed  Google Scholar 

  2. Dzobo K, Senthebane DA, Rowe A, Thomford NE, Mwapagha LM, Al-Awwad N, Dandara C, Parker MI (2016) Cancer stem cell hypothesis for therapeutic innovation in clinical oncology? Taking the root out, not chopping the leaf. Omics 20(12):681–691

    CAS  PubMed  Google Scholar 

  3. Boesch M, Sopper S, Zeimet AG, Reimer D, Gastl G, Ludewig B (1866) Wolf D (2016) Heterogeneity of cancer stem cells: rationale for targeting the stem cell niche. Biochim Biophys Acta (BBA) 2:276–289

    Google Scholar 

  4. Lupia M, Cavallaro U (2017) Ovarian cancer stem cells: still an elusive entity? Mol Cancer 16(1):64

    PubMed  PubMed Central  Google Scholar 

  5. Iwatsuki M, Mimori K, Yokobori T, Ishi H, Beppu T, Nakamori S, Baba H, Mori M (2010) Epithelial–mesenchymal transition in cancer development and its clinical significance. Cancer Sci 101(2):293–299

    CAS  PubMed  Google Scholar 

  6. Pradella D, Naro C, Sette C, Ghigna C (2017) EMT and stemness: flexible processes tuned by alternative splicing in development and cancer progression. Mol Cancer 16(1):8

    PubMed  PubMed Central  Google Scholar 

  7. Chaffer CL, San Juan BP, Lim E, Weinberg RA (2016) EMT, cell plasticity and metastasis. Cancer Metastasis Rev 35(4):645–654

    PubMed  Google Scholar 

  8. Matsui WH (2016) Cancer stem cell signaling pathways. Medicine 95(Suppl 1):S8–S19

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Chefetz I, Alvero AB, Holmberg JC, Lebowitz N, Craveiro V, Yang-Hartwich Y, Yin G, Squillace L, Gurrea Soteras M, Aldo P, Mor G (2013) TLR2 enhances ovarian cancer stem cell self-renewal and promotes tumor repair and recurrence. Cell Cycle 12(3):511–521

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kim DK, Seo EJ, Choi EJ, Lee SI, Kwon YW, Jang IH, Kim SC, Kim KH, Suh DS, Seong-Jang K, Lee SC, Kim JH (2016) Crucial role of HMGA1 in the self-renewal and drug resistance of ovarian cancer stem cells. Exp Mol Med 48(8):e255

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang Y, Hill KS, Fields AP (2013) PKCι maintains a tumor-initiating cell phenotype that is required for ovarian tumorigenesis. Mol Cancer Res 11(12):1624–1635

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Xia Y, Zhang Y-L, Yu C, Chang T, Fan H-Y (2014) YAP/TEAD co-activator regulated pluripotency and chemoresistance in ovarian cancer initiated cells. PLoS ONE 9(11):e109575

    PubMed  PubMed Central  Google Scholar 

  13. Virant-Klun I, Zech N, Rozman P, Vogler A, Cvjeticanin B, Klemenc P, Malicev E, Meden-Vrtovec H (2008) Putative stem cells with an embryonic character isolated from the ovarian surface epithelium of women with no naturally present follicles and oocytes. Differentiation 76(8):843–856

    CAS  PubMed  Google Scholar 

  14. Virant-Klun I, Stimpfel M, Cvjeticanin B, Vrtacnik-Bokal E, Skutella T (2013) Small SSEA-4-positive cells from human ovarian cell cultures: related to embryonic stem cells and germinal lineage? J Ovar Res 6(1):24

    CAS  Google Scholar 

  15. Virant-Klun I, Stimpfel M (2016) Novel population of small tumour-initiating stem cells in the ovaries of women with borderline ovarian cancer. Sci Rep 6:34730

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Bapat SA, Mali AM, Koppikar CB, Kurrey NK (2005) Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer. Cancer Res 65(8):3025–3029

    CAS  PubMed  Google Scholar 

  17. Kessler M, Hoffmann K, Brinkmann V, Thieck O, Jackisch S, Toelle B, Berger H, Mollenkopf HJ, Mangler M, Sehouli J, Fotopoulou C, Meyer TF (2015) The Notch and Wnt pathways regulate stemness and differentiation in human fallopian tube organoids. Nat Commun 6:8989

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hoffmann K, Hoffmann K, Berger H, Kulbe H, Thillainadarasan S, Mollenkopf HJ, Zemojtel T, Taube E, Darb-Esfahani S, Mangler M, Sehouli J, Chekerov R, Braicu E, Meyer TF, Kessler M et al (2019) Preservation of stemness in high-grade serous ovarian cancer organoids requires low Wnt environment. bioRxiv. https://doi.org/10.1101/741397

    Article  Google Scholar 

  19. Peinado H, Zhang H, Matei I, Costa-Silva B, Hoshino A, Rodrigues G, Psaila B, Kaplan RN, Bromberg JF, Kang Y, Bissell MJ, Cox TR, Giaccia AJ, Erler JT, Hiratsuka S, Ghajar CM, Lyden D (2017) Pre-metastatic niches: organ-specific homes for metastases. Nat Rev Cancer 17(5):302–317

    CAS  PubMed  Google Scholar 

  20. Ottevanger PB (2017) Ovarian cancer stem cells more questions than answers. Semin Cancer Biol 44:67–71

    CAS  PubMed  Google Scholar 

  21. Abubaker K, Luwor RB, Zhu H, McNally O, Quinn MA, Burns CJ, Thompson EW, Findlay JK, Ahmed N (2014) Inhibition of the JAK2/STAT3 pathway in ovarian cancer results in the loss of cancer stem cell-like characteristics and a reduced tumor burden. BMC Cancer 14(1):317

    PubMed  PubMed Central  Google Scholar 

  22. Bharti R, Dey G, Mandal M (2016) Cancer development, chemoresistance, epithelial to mesenchymal transition and stem cells: a snapshot of IL-6 mediated involvement. Cancer Lett 375(1):51–61

    CAS  PubMed  Google Scholar 

  23. Kim S, Gwak H, Kim HS, Kim B, Dhanasekaran DN, Song YS (2016) Malignant ascites enhances migratory and invasive properties of ovarian cancer cells with membrane bound IL-6R in vitro. Oncotarget 7(50):83148

    PubMed  PubMed Central  Google Scholar 

  24. Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, Zillhardt MR, Romero IL, Carey MS, Mills GB, Hotamisligil GS, Yamada SD, Peter ME, Gwin K, Lengyel E (2011) Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med 17(11):1498

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Phinney DG, Di Giuseppe M, Njah J, Sala E, Shiva S, St Croix CM, Stolz DB, Watkins SC, Di YP, Leikauf GD, Kolls J, Riches DW, Deiuliis G, Kaminski N, Boregowda SV, McKenna DH, Ortiz LA (2015) Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nat Commun 6:8472

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Nakamura K, Sawada K, Kobayashi M, Miyamoto M, Shimizu A, Yamamoto M, Kinose Y, Kimura T (2019) Role of the exosome in ovarian cancer progression and its potential as a therapeutic target. Cancers 11(8):1147

    CAS  PubMed Central  Google Scholar 

  27. Curley MD, Therrien VA, Cummings CL, Sergent PA, Koulouris CR, Friel AM, Roberts DJ, Seiden MV, Scadden DT, Rueda BR, Foster R (2009) CD133 expression defines a tumor initiating cell population in primary human ovarian cancer. Stem Cells 27(12):2875–2883

    CAS  PubMed  Google Scholar 

  28. Walters Haygood CL, Arend RC, Straughn JM, Buchsbaum DJ (2014) Ovarian cancer stem cells: Can targeted therapy lead to improved progression-free survival? World J Stem Cells 6(4):441

    PubMed  PubMed Central  Google Scholar 

  29. Baba T, Convery PA, Matsumura N, Whitaker RS, Kondoh E, Perry T, Huang Z, Bentley RC, Mori S, Fujii S, Marks JR, Berchuck A, Murphy SK (2009) Epigenetic regulation of CD133 and tumorigenicity of CD133+ ovarian cancer cells. Oncogene 28(2):209

    CAS  PubMed  Google Scholar 

  30. Zhang J, Guo X, Chang DY, Rosen DG, Mercado-Uribe I, Liu J (2012) CD133 expression associated with poor prognosis in ovarian cancer. Mod Pathol 25(3):456

    CAS  PubMed  Google Scholar 

  31. Klapdor R, Wang S, Hacker U, Büning H, Morgan M, Dörk T, Hillemanns P, Schambach A (2017) Improved killing of ovarian cancer stem cells by combining a novel chimeric antigen receptor-based immunotherapy and chemotherapy. Human Gene Ther 28(10):886–896

    CAS  Google Scholar 

  32. Meirelles K, Benedict LA, Dombkowski D, Pepin D, Preffer FI, Teixeira J, Tanwar PS, Young RH, MacLaughlin DT, Donahoe PK, Wei X (2012) Human ovarian cancer stem/progenitor cells are stimulated by doxorubicin but inhibited by Mullerian inhibiting substance. Proc Natl Acad Sci USA 109(7):2358–2363

    CAS  PubMed  Google Scholar 

  33. Burgos-Ojeda D, Rueda BR, Buckanovich RJ (2012) Ovarian cancer stem cell markers: prognostic and therapeutic implications. Cancer Lett 322(1):1–7

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Nakamura K, Terai Y, Tanabe A, Ono YJ, Hayashi M, Maeda K, Fujiwara S, Ashihara K, Nakamura M, Tanaka Y, Tanaka T, Tsunetoh S, Sasaki H, Ohmichi M (2017) CD24 expression is a marker for predicting clinical outcome and regulates the epithelial-mesenchymal transition in ovarian cancer via both the Akt and ERK pathways. Oncol Rep 37(6):3189–3200

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Jaggupilli A, Elkord E (2012) Significance of CD44 and CD24 as cancer stem cell markers: an enduring ambiguity. Clin Dev Immunol. https://doi.org/10.1155/2012/708036

    Article  PubMed  PubMed Central  Google Scholar 

  36. Choi YL, Kim SH, Shin YK, Hong YC, Lee SJ, Kang SY, Ahn G (2005) Cytoplasmic CD24 expression in advanced ovarian serous borderline tumors. Gynecol Oncol 97(2):379–386

    CAS  PubMed  Google Scholar 

  37. Wang Y, Shao F, Chen L (2018) alDh1a2 suppresses epithelial ovarian cancer cell proliferation and migration by downregulating sTaT3. Oncotargets Ther 11:599

    Google Scholar 

  38. Wang YC, Yo YT, Lee HY, Liao YP, Chao TK, Su PH, Lai HC (2012) ALDH1-bright epithelial ovarian cancer cells are associated with CD44 expression, drug resistance, and poor clinical outcome. Am J Pathol 180(3):1159–1169

    PubMed  Google Scholar 

  39. Januchowski R, Wojtowicz K, Sterzyſska K, Sosiſska P, Andrzejewska M, Zawierucha P, Nowicki M, Zabel M (2016) Inhibition of ALDH1A1 activity decreases expression of drug transporters and reduces chemotherapy resistance in ovarian cancer cell lines. Int J Biochem Cell Biol 78:248–259

    CAS  PubMed  Google Scholar 

  40. Landen CN Jr, Goodman B, Katre AA, Steg AD, Nick AM, Stone RL, Miller LD, Mejia PV, Jennings NB, Gershenson DM, Bast RC Jr, Coleman RL, Lopez-Berestein G, Sood AK (2010) Targeting aldehyde dehydrogenase cancer stem cells in ovarian cancer. Mol Cancer Ther 9(12):3186–3199

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ruscito I, Darb-Esfahani S, Kulbe H, Bellati F, Zizzari IG, Koshkaki HR, Napoletano C, Caserta D, Rughetti A, Kessler M, Sehouli J, Nuti M, Braicu EI (2018) The prognostic impact of cancer stem-like cell biomarker aldehyde dehydrogenase-1 (ALDH1) in ovarian cancer: a meta-analysis. Gynecol Oncol 150(1):151–157. https://doi.org/10.1016/j.ygyno.2018.05.006

    Article  CAS  PubMed  Google Scholar 

  42. Chen W, Dong J, Haiech J, Kilhoffer MC, Zeniou M (2016) Cancer stem cell quiescence and plasticity as major challenges in cancer therapy. Stem Cells Int. https://doi.org/10.1155/2016/1740936

    Article  PubMed  PubMed Central  Google Scholar 

  43. Nassar D, Blanpain C (2016) Cancer stem cells: basic concepts and therapeutic implications. Annu Rev Pathol 11:47–76

    CAS  PubMed  Google Scholar 

  44. Takeishi S, Nakayama KI (2016) To wake up cancer stem cells, or to let them sleep, that is the question. Cancer Sci 107(7):875–881

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Gao Y, Foster R, Yang X, Feng Y, Shen JK, Mankin HJ, Hornicek FJ, Amiji MM, Duan Z (2015) Up-regulation of CD44 in the development of metastasis, recurrence and drug resistance of ovarian cancer. Oncotarget 6(11):9313

    PubMed  PubMed Central  Google Scholar 

  46. Meng E, Long B, Sullivan P, McClellan S, Finan MA, Reed E, Shevde L, Rocconi RP (2012) CD44+/CD24− ovarian cancer cells demonstrate cancer stem cell properties and correlate to survival. Clin Exp Metastasis 29(8):939–948

    CAS  PubMed  Google Scholar 

  47. Kenda Suster N, Virant-Klun I (2019) Presence and role of stem cells in ovarian cancer. World J Stem Cells 11(7):383

    PubMed  PubMed Central  Google Scholar 

  48. Arend RC, Londoño-Joshi AI, Samant RS, Li Y, Conner M, Hidalgo B, Alvarez RD, Landen CN, Straughn JM, Buchsbaum DJ (2014) Inhibition of Wnt/β-catenin pathway by niclosamide: a therapeutic target for ovarian cancer. Gynecol Oncol 134(1):112–120

    CAS  PubMed  Google Scholar 

  49. de Lartigue J (2015) Olaparib for BRCA-mutated advanced ovarian cancer. JCSO 13:206–208

    Google Scholar 

  50. Meehan RS, Chen AP (2016) New treatment option for ovarian cancer: PARP inhibitors. Gynecol Oncol Res Pract 3(1):3

    PubMed  PubMed Central  Google Scholar 

  51. Liu J, Matulonis UA (2014) New strategies in ovarian cancer: translating the molecular complexity of ovarian cancer into treatment advances. Clin Cancer Res 20(20):5150–5156

    CAS  PubMed  Google Scholar 

  52. Bellio C, DiGloria C, Foster R, James K, Konstantinopoulos PA, Growdon WB, Rueda BR (2019) PARP inhibition induces enrichment of DNA repair–proficient CD133 and CD117 positive ovarian cancer stem cells. Mol Cancer Res 17(2):431–445

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

CS: project development and manuscript writing. FS: project development and manuscript writing. PC: manuscript editing. CF: project development and manuscript writing.

Corresponding author

Correspondence to Christina Fotopoulou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabini, C., Sorbi, F., Cunnea, P. et al. Ovarian cancer stem cells: ready for prime time?. Arch Gynecol Obstet 301, 895–899 (2020). https://doi.org/10.1007/s00404-020-05510-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-020-05510-9

Keywords

Navigation