Skip to main content

Advertisement

Log in

Polycystic ovary syndrome, adipose tissue and metabolic syndrome

  • Review
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

Polycystic ovary syndrome (PCOS) is the most common endocrine disorder that affects women of reproductive age and is characterized by ovulatory dysfunction and/or androgen excess or polycystic ovaries. Women with PCOS present a number of systemic symptoms in addition to those related to the reproductive system. It has been associated with functional derangements in adipose tissue, metabolic syndrome, type 2 diabetes, and an increased risk of cardiovascular disease (CVD).

Methods

A detailed literature search on Pubmed was done for articles about PCOS, adipokines, insulin resistance, and metabolic syndrome. Original articles, reviews, and meta-analysis were included.

Results

PCOS women are prone to visceral fat hypertrophy in the presence of androgen excess and the presence of these conditions is related to insulin resistance and worsens the PCO phenotype. Disturbed secretion of many adipocyte-derived substances (adipokines) is associated with chronic low-grade inflammation and contributes to insulin resistance. Abdominal obesity and insulin resistance stimulate ovarian and adrenal androgen production, and may further increase abdominal obesity and inflammation, thus creating a vicious cycle.

Conclusion

The high prevalence of metabolic disorders mainly related to insulin resistance and CVD risk factors in women with PCOS highlight the need for early lifestyle changes for reducing metabolic risks in these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Yildiz BO (2006) Diagnosis of hyperandrogenism: clinical criteria. Best Pract Res Clin Endocrinol Metab 20:167–176

    Article  CAS  PubMed  Google Scholar 

  2. Rotterdam EA-SPcwg (2004) Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod 19:41–47

    Article  Google Scholar 

  3. Zawadski JK (1992) Diagnostic criteria for polycystic ovary syndrome: towards a rational approach. In: Dunaif AGJ, Haseltine FP, Merriam GR (eds) polycystic ovary syndrome. Blackwell Scientific Publications, Boston, pp 377–384

    Google Scholar 

  4. Azziz R (2006) Controversy in clinical endocrinology: diagnosis of polycystic ovarian syndrome: the Rotterdam criteria are premature. J Clin Endocrinol Metab 91:781–785

    Article  CAS  PubMed  Google Scholar 

  5. Fulghesu AM, Angioni S, Frau E, Belosi C, Apa R, Mioni R et al (2007) Ultrasound in polycystic ovary syndrome—the measuring of ovarian stroma and relationship with circulating androgens: results of a multicentric study. Hum Reprod 22:2501–2508

    Article  CAS  PubMed  Google Scholar 

  6. Kalinin VL, Suslova IN, Suslov AV (1984) Mutagenic effects of gamma-rays on plasmid DNA in Escherichia coli. Radiobiologiia 24:599–602

    CAS  PubMed  Google Scholar 

  7. DeUgarte CM, Bartolucci AA, Azziz R (2005) Prevalence of insulin resistance in the polycystic ovary syndrome using the homeostasis model assessment. Fertil Steril 83:1454–1460

    Article  CAS  PubMed  Google Scholar 

  8. Van Pelt RE, Jankowski CM, Gozansky WS, Schwartz RS, Kohrt WM (2005) Lower-body adiposity and metabolic protection in postmenopausal women. J Clin Endocrinol Metab 90:4573–4578

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Wajchenberg BL (2000) Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr Rev 21:697–738

    Article  CAS  PubMed  Google Scholar 

  10. Goodarzi MO, Azziz R (2006) Diagnosis, epidemiology, and genetics of the polycystic ovary syndrome. Best Pract Res Clin Endocrinol Metab 20:193–205

    Article  CAS  PubMed  Google Scholar 

  11. Rosenfield RL, Ehrmann DA (2016) The pathogenesis of polycystic ovary syndrome (PCOS): the hypothesis of PCOS as functional ovarian hyperandrogenism revisited. Endocr Rev 37:467–520

    Article  PubMed  Google Scholar 

  12. Wickenheisser JK, Quinn PG, Nelson VL, Legro RS, Strauss JF 3rd, McAllister JM (2000) Differential activity of the cytochrome P450 17alpha-hydroxylase and steroidogenic acute regulatory protein gene promoters in normal and polycystic ovary syndrome theca cells. J Clin Endocrinol Metab 85:2304–2311

    CAS  PubMed  Google Scholar 

  13. Azziz R, Carmina E, Dewailly D, Diamanti-Kandarakis E, Escobar-Morreale HF, Futterweit W et al (2009) The androgen excess and PCOS society criteria for the polycystic ovary syndrome: the complete task force report. Fertil Steril 91:456–488

    Article  PubMed  Google Scholar 

  14. Hull MG (1987) Epidemiology of infertility and polycystic ovarian disease: endocrinological and demographic studies. Gynecol Endocrinol 1:235–245

    Article  CAS  PubMed  Google Scholar 

  15. Nestler JE, Powers LP, Matt DW, Steingold KA, Plymate SR, Rittmaster RS et al (1991) A direct effect of hyperinsulinemia on serum sex hormone-binding globulin levels in obese women with the polycystic ovary syndrome. J Clin Endocrinol Metab 72:83–89

    Article  CAS  PubMed  Google Scholar 

  16. Ehrmann DA, Barnes RB, Rosenfield RL (1995) Polycystic ovary syndrome as a form of functional ovarian hyperandrogenism due to dysregulation of androgen secretion. Endocr Rev 16:322–353

    Article  CAS  PubMed  Google Scholar 

  17. Diamanti-Kandarakis E, Dunaif A (2012) Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr Rev 33:981–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yildiz BO, Azziz R (2007) The adrenal and polycystic ovary syndrome. Rev Endocr Metab Disord 8:331–342

    Article  CAS  PubMed  Google Scholar 

  19. Rosenfield RL, Barnes RB, Ehrmann DA (1994) Studies of the nature of 17-hydroxyprogesterone hyperresonsiveness to gonadotropin-releasing hormone agonist challenge in functional ovarian hyperandrogenism. J Clin Endocrinol Metab 79:1686–1692

    CAS  PubMed  Google Scholar 

  20. Nelson VL, Qin KN, Rosenfield RL, Wood JR, Penning TM, Legro RS et al (2001) The biochemical basis for increased testosterone production in theca cells propagated from patients with polycystic ovary syndrome. J Clin Endocrinol Metab 86:5925–5933

    Article  CAS  PubMed  Google Scholar 

  21. Diamanti-Kandarakis E (2008) Polycystic ovarian syndrome: pathophysiology, molecular aspects and clinical implications. Expert Rev Mol Med 10:e3

    Article  PubMed  Google Scholar 

  22. De Leo V, Musacchio MC, Cappelli V, Massaro MG, Morgante G, Petraglia F (2016) Genetic, hormonal and metabolic aspects of PCOS: an update. Reprod Biol Endocrinol 14:38

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kalro BN, Loucks TL, Berga SL (2001) Neuromodulation in polycystic ovary syndrome. Obstet Gynecol Clin N Am 28:35–62

    Article  CAS  Google Scholar 

  24. Dunaif A, Wu X, Lee A, Diamanti-Kandarakis E (2001) Defects in insulin receptor signaling in vivo in the polycystic ovary syndrome (PCOS). Am J Physiol Endocrinol Metab 281:E392–E399

    CAS  PubMed  Google Scholar 

  25. Ciaraldi TP, el-Roeiy A, Madar Z, Reichart D, Olefsky JM, Yen SS (1992) Cellular mechanisms of insulin resistance in polycystic ovarian syndrome. J Clin Endocrinol Metab 75:577–583

    CAS  PubMed  Google Scholar 

  26. Bremer AA, Miller WL (2008) The serine phosphorylation hypothesis of polycystic ovary syndrome: a unifying mechanism for hyperandrogenemia and insulin resistance. Fertil Steril 89:1039–1048

    Article  CAS  PubMed  Google Scholar 

  27. Ciaraldi TP, Aroda V, Mudaliar S, Chang RJ, Henry RR (2009) Polycystic ovary syndrome is associated with tissue-specific differences in insulin resistance. J Clin Endocrinol Metab 94:157–163

    Article  CAS  PubMed  Google Scholar 

  28. De Leo V, la Marca A, Petraglia F (2003) Insulin-lowering agents in the management of polycystic ovary syndrome. Endocr Rev 24:633–667

    Article  PubMed  CAS  Google Scholar 

  29. Legro RS (1999) Polycystic ovary syndrome. Phenotype to genotype. Endocrinol Metab Clin N Am 28:379–396

    Article  CAS  Google Scholar 

  30. Ehrmann DA, Barnes RB, Rosenfield RL, Cavaghan MK, Imperial J (1999) Prevalence of impaired glucose tolerance and diabetes in women with polycystic ovary syndrome. Diabetes Care 22:141–146

    Article  CAS  PubMed  Google Scholar 

  31. Kiddy DS, Hamilton-Fairley D, Bush A, Short F, Anyaoku V, Reed MJ et al (1992) Improvement in endocrine and ovarian function during dietary treatment of obese women with polycystic ovary syndrome. Clin Endocrinol (Oxf) 36:105–111

    Article  CAS  Google Scholar 

  32. Carmina E (2003) Genetic and environmental aspect of polycystic ovary syndrome. J Endocrinol Investig 26:1151–1159

    Article  CAS  Google Scholar 

  33. Carmina E, Azziz R (2006) Diagnosis, phenotype, and prevalence of polycystic ovary syndrome. Fertil Steril 86(Suppl 1):S7–S8

    Article  PubMed  Google Scholar 

  34. Gambineri A, Pelusi C, Vicennati V, Pagotto U, Pasquali R (2002) Obesity and the polycystic ovary syndrome. Int J Obes Relat Metab Disord 26:883–896

    Article  CAS  PubMed  Google Scholar 

  35. Barber TM, Golding SJ, Alvey C, Wass JA, Karpe F, Franks S et al (2008) Global adiposity rather than abnormal regional fat distribution characterizes women with polycystic ovary syndrome. J Clin Endocrinol Metab 93:999–1004

    Article  CAS  PubMed  Google Scholar 

  36. Pasquali R, Gambineri A (2006) Polycystic ovary syndrome: a multifaceted disease from adolescence to adult age. Ann N Y Acad Sci 1092:158–174

    Article  PubMed  Google Scholar 

  37. Winters SJ, Talbott E, Guzick DS, Zborowski J, McHugh KP (2000) Serum testosterone levels decrease in middle age in women with the polycystic ovary syndrome. Fertil Steril 73:724–729

    Article  CAS  PubMed  Google Scholar 

  38. Birdsall MA, Farquhar CM (1996) Polycystic ovaries in pre and post-menopausal women. Clin Endocrinol (Oxf) 44:269–276

    Article  CAS  Google Scholar 

  39. Grundy SM, Brewer HB Jr, Cleeman JI, Smith SC Jr, Lenfant C, American Heart A et al (2004) Definition of metabolic syndrome: report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation 109:433–438

    Article  PubMed  Google Scholar 

  40. Despres JP, Lemieux I (2006) Abdominal obesity and metabolic syndrome. Nature 444:881–887

    Article  CAS  PubMed  Google Scholar 

  41. Weyer C, Hanson RL, Tataranni PA, Bogardus C, Pratley RE (2000) A high fasting plasma insulin concentration predicts type 2 diabetes independent of insulin resistance: evidence for a pathogenic role of relative hyperinsulinemia. Diabetes 49:2094–2101

    Article  CAS  PubMed  Google Scholar 

  42. Leonhardt W, Hanefeld M, Schneider H, Haller H (1972) Human adipocyte volumes: maximum size, and correlation to weight index in maturity onset-diabetes. Diabetologia 8:287–291

    Article  CAS  PubMed  Google Scholar 

  43. Kirchengast S, Huber J (2001) Body composition characteristics and body fat distribution in lean women with polycystic ovary syndrome. Hum Reprod 16:1255–1260

    Article  CAS  PubMed  Google Scholar 

  44. Horejsi R, Moller R, Rackl S, Giuliani A, Freytag U, Crailsheim K et al (2004) Android subcutaneous adipose tissue topography in lean and obese women suffering from PCOS: comparison with type 2 diabetic women. Am J Phys Anthropol 124:275–281

    Article  CAS  PubMed  Google Scholar 

  45. Cupisti S, Kajaia N, Dittrich R, Duezenli H, Beckmann MW, Mueller A (2008) Body mass index and ovarian function are associated with endocrine and metabolic abnormalities in women with hyperandrogenic syndrome. Eur J Endocrinol 158:711–719

    Article  CAS  PubMed  Google Scholar 

  46. Legro RS, Kunselman AR, Dodson WC, Dunaif A (1999) Prevalence and predictors of risk for type 2 diabetes mellitus and impaired glucose tolerance in polycystic ovary syndrome: a prospective, controlled study in 254 affected women. J Clin Endocrinol Metab 84:165–169

    CAS  PubMed  Google Scholar 

  47. Glintborg D, Henriksen JE, Andersen M, Hagen C, Hangaard J, Rasmussen PE et al (2004) Prevalence of endocrine diseases and abnormal glucose tolerance tests in 340 Caucasian premenopausal women with hirsutism as the referral diagnosis. Fertil Steril 82:1570–1579

    Article  PubMed  Google Scholar 

  48. Rosen ED, Spiegelman BM (2014) What we talk about when we talk about fat. Cell 156:20–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ek I, Arner P, Ryden M, Holm C, Thorne A, Hoffstedt J et al (2002) A unique defect in the regulation of visceral fat cell lipolysis in the polycystic ovary syndrome as an early link to insulin resistance. Diabetes 51:484–492

    Article  CAS  PubMed  Google Scholar 

  50. Arner P, Hellstrom L, Wahrenberg H, Bronnegard M (1990) Beta-adrenoceptor expression in human fat cells from different regions. J Clin Investig 86:1595–1600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lonnqvist F, Krief S, Strosberg AD, Nyberg S, Emorine LJ, Arner P (1993) Evidence for a functional beta 3-adrenoceptor in man. Br J Pharmacol 110:929–936

    Article  CAS  PubMed  Google Scholar 

  52. Boden G (1998) Free fatty acids (FFA), a link between obesity and insulin resistance. Front Biosci 3:d169–d175

    Article  CAS  PubMed  Google Scholar 

  53. Fasshauer M, Paschke R (2003) Regulation of adipocytokines and insulin resistance. Diabetologia 46:1594–1603

    Article  CAS  PubMed  Google Scholar 

  54. Fain JN (2006) Release of interleukins and other inflammatory cytokines by human adipose tissue is enhanced in obesity and primarily due to the nonfat cells. Vitam Horm 74:443–477

    Article  CAS  PubMed  Google Scholar 

  55. Belanger C, Luu-The V, Dupont P, Tchernof A (2002) Adipose tissue intracrinology: potential importance of local androgen/estrogen metabolism in the regulation of adiposity. Horm Metab Res 34:737–745

    Article  CAS  PubMed  Google Scholar 

  56. Meseguer A, Puche C, Cabero A (2002) Sex steroid biosynthesis in white adipose tissue. Horm Metab Res 34:731–736

    Article  CAS  PubMed  Google Scholar 

  57. Seckl JR, Walker BR (2004) 11beta-hydroxysteroid dehydrogenase type 1 as a modulator of glucocorticoid action: from metabolism to memory. Trends Endocrinol Metab 15:418–424

    Article  CAS  PubMed  Google Scholar 

  58. Lundgren M, Buren J, Ruge T, Myrnas T, Eriksson JW (2004) Glucocorticoids down-regulate glucose uptake capacity and insulin-signaling proteins in omental but not subcutaneous human adipocytes. J Clin Endocrinol Metab 89:2989–2997

    Article  CAS  PubMed  Google Scholar 

  59. Michael AE, Evagelatou M, Norgate DP, Clarke RJ, Antoniw JW, Stedman BA et al (1997) Isoforms of 11beta-hydroxysteroid dehydrogenase in human granulosa-lutein cells. Mol Cell Endocrinol 132:43–52

    Article  CAS  PubMed  Google Scholar 

  60. Wake DJ, Rask E, Livingstone DE, Soderberg S, Olsson T, Walker BR (2003) Local and systemic impact of transcriptional up-regulation of 11beta-hydroxysteroid dehydrogenase type 1 in adipose tissue in human obesity. J Clin Endocrinol Metab 88:3983–3988

    Article  CAS  PubMed  Google Scholar 

  61. Valsamakis G, Anwar A, Tomlinson JW, Shackleton CH, McTernan PG, Chetty R et al (2004) 11beta-hydroxysteroid dehydrogenase type 1 activity in lean and obese males with type 2 diabetes mellitus. J Clin Endocrinol Metab 89:4755–4761

    Article  CAS  PubMed  Google Scholar 

  62. Masuzaki H, Paterson J, Shinyama H, Morton NM, Mullins JJ, Seckl JR et al (2001) A transgenic model of visceral obesity and the metabolic syndrome. Science 294:2166–2170

    Article  CAS  PubMed  Google Scholar 

  63. Rask E, Walker BR, Soderberg S, Livingstone DE, Eliasson M, Johnson O et al (2002) Tissue-specific changes in peripheral cortisol metabolism in obese women: increased adipose 11beta-hydroxysteroid dehydrogenase type 1 activity. J Clin Endocrinol Metab 87:3330–3336

    CAS  PubMed  Google Scholar 

  64. Fanciulli G, Delitala A, Delitala G (2009) Growth hormone, menopause and ageing: no definite evidence for ‘rejuvenation’ with growth hormone. Hum Reprod Update 15:341–358

    Article  CAS  PubMed  Google Scholar 

  65. Brummer RJ, Lonn L, Kvist H, Grangard U, Bengtsson BA, Sjostrom L (1993) Adipose tissue and muscle volume determination by computed tomography in acromegaly, before and 1 year after adenomectomy. Eur J Clin Investig 23:199–205

    Article  CAS  Google Scholar 

  66. Bjorntorp P (1997) Obesity. Lancet 350:423–426

    Article  CAS  PubMed  Google Scholar 

  67. Beauville M, Harant I, Crampes F, Riviere D, Tauber MT, Tauber JP et al (1992) Effect of long-term rhGH administration in GH-deficient adults on fat cell epinephrine response. Am J Physiol 263:E467–E472

    CAS  PubMed  Google Scholar 

  68. Glass AR (1989) Endocrine aspects of obesity. Med Clin N Am 73:139–160

    Article  CAS  PubMed  Google Scholar 

  69. Rudman D (1985) Growth hormone, body composition, and aging. J Am Geriatr Soc 33:800–807

    Article  CAS  PubMed  Google Scholar 

  70. Vahl N, Moller N, Lauritzen T, Christiansen JS, Jorgensen JO (1997) Metabolic effects and pharmacokinetics of a growth hormone pulse in healthy adults: relation to age, sex, and body composition. J Clin Endocrinol Metab 82:3612–3618

    Article  CAS  PubMed  Google Scholar 

  71. Clasey JL, Weltman A, Patrie J, Weltman JY, Pezzoli S, Bouchard C et al (2001) Abdominal visceral fat and fasting insulin are important predictors of 24-hour GH release independent of age, gender, and other physiological factors. J Clin Endocrinol Metab 86:3845–3852

    Article  CAS  PubMed  Google Scholar 

  72. Fain JN, Madan AK, Hiler ML, Cheema P, Bahouth SW (2004) Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans. Endocrinology 145:2273–2282

    Article  CAS  PubMed  Google Scholar 

  73. Friedman JM, Halaas JL (1998) Leptin and the regulation of body weight in mammals. Nature 395:763–770

    Article  CAS  PubMed  Google Scholar 

  74. Zemel MB (1998) Agouti/melanocortin interactions with leptin pathways in obesity. Nutr Rev 56:271–274

    Article  CAS  PubMed  Google Scholar 

  75. Rosenbaum M, Murphy EM, Heymsfield SB, Matthews DE, Leibel RL (2002) Low dose leptin administration reverses effects of sustained weight-reduction on energy expenditure and circulating concentrations of thyroid hormones. J Clin Endocrinol Metab 87:2391–2394

    Article  CAS  PubMed  Google Scholar 

  76. Bjorbaek C, Kahn BB (2004) Leptin signaling in the central nervous system and the periphery. Recent Prog Horm Res 59:305–331

    Article  CAS  PubMed  Google Scholar 

  77. Flier JS (2004) Obesity wars: molecular progress confronts an expanding epidemic. Cell 116:337–350

    Article  CAS  PubMed  Google Scholar 

  78. Heymsfield SB, Greenberg AS, Fujioka K, Dixon RM, Kushner R, Hunt T et al (1999) Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial. JAMA 282:1568–1575

    Article  CAS  PubMed  Google Scholar 

  79. Caro JF, Kolaczynski JW, Nyce MR, Ohannesian JP, Opentanova I, Goldman WH et al (1996) Decreased cerebrospinal-fluid/serum leptin ratio in obesity: a possible mechanism for leptin resistance. Lancet 348:159–161

    Article  CAS  PubMed  Google Scholar 

  80. Bjorbaek C, El-Haschimi K, Frantz JD, Flier JS (1999) The role of SOCS-3 in leptin signaling and leptin resistance. J Biol Chem 274:30059–30065

    Article  CAS  PubMed  Google Scholar 

  81. Capobianco G, de Muro P, Cherchi GM, Formato M, Lepedda AJ, Cigliano A et al (2010) Plasma levels of C-reactive protein, leptin and glycosaminoglycans during spontaneous menstrual cycle: differences between ovulatory and anovulatory cycles. Arch Gynecol Obstet 282:207–213

    Article  CAS  PubMed  Google Scholar 

  82. Koerner A, Kratzsch J, Kiess W (2005) Adipocytokines: leptin—the classical, resistin—the controversical, adiponectin—the promising, and more to come. Best Pract Res Clin Endocrinol Metab 19:525–546

    Article  CAS  PubMed  Google Scholar 

  83. Beltowski J (2006) Role of leptin in blood pressure regulation and arterial hypertension. J Hypertens 24:789–801

    Article  CAS  PubMed  Google Scholar 

  84. Karaduman M, Oktenli C, Musabak U, Sengul A, Yesilova Z, Cingoz F et al (2006) Leptin, soluble interleukin-6 receptor, C-reactive protein and soluble vascular cell adhesion molecule-1 levels in human coronary atherosclerotic plaque. Clin Exp Immunol 143:452–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Beltowski J (2006) Leptin and atherosclerosis. Atherosclerosis 189:47–60

    Article  CAS  PubMed  Google Scholar 

  86. Singh P, Hoffmann M, Wolk R, Shamsuzzaman AS, Somers VK (2007) Leptin induces C-reactive protein expression in vascular endothelial cells. Arterioscler Thromb Vasc Biol 27:e302–e307

    Article  CAS  PubMed  Google Scholar 

  87. Romero-Corral A, Sierra-Johnson J, Lopez-Jimenez F, Thomas RJ, Singh P, Hoffmann M et al (2008) Relationships between leptin and C-reactive protein with cardiovascular disease in the adult general population. Nat Clin Pract Cardiovasc Med 5:418–425

    Article  CAS  PubMed  Google Scholar 

  88. Wallace AM, McMahon AD, Packard CJ, Kelly A, Shepherd J, Gaw A et al (2001) Plasma leptin and the risk of cardiovascular disease in the west of Scotland coronary prevention study (WOSCOPS). Circulation 104:3052–3056

    Article  CAS  PubMed  Google Scholar 

  89. Licinio J, Caglayan S, Ozata M, Yildiz BO, de Miranda PB, O’Kirwan F et al (2004) Phenotypic effects of leptin replacement on morbid obesity, diabetes mellitus, hypogonadism, and behavior in leptin-deficient adults. Proc Natl Acad Sci USA 101:4531–4536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Oral EA, Simha V, Ruiz E, Andewelt A, Premkumar A, Snell P et al (2002) Leptin-replacement therapy for lipodystrophy. N Engl J Med 346:570–578

    Article  CAS  PubMed  Google Scholar 

  91. Lecke SB, Morsch DM, Spritzer PM (2011) Leptin and adiponectin in the female life course. Braz J Med Biol Res 44:381–387

    Article  CAS  PubMed  Google Scholar 

  92. Lecke SB, Morsch DM, Spritzer PM (2013) Association between adipose tissue expression and serum levels of leptin and adiponectin in women with polycystic ovary syndrome. Genet Mol Res 12:4292–4296

    Article  CAS  PubMed  Google Scholar 

  93. Spritzer PM, Comim FV, Capp E, D’Avila A (2005) Influence of leptin, androgens and insulin sensitivity on increased GH response to clonidine in lean patients with polycystic ovary syndrome. Horm Metab Res 37:94–98

    Article  CAS  PubMed  Google Scholar 

  94. Tan BK, Chen J, Hu J, Amar O, Mattu HS, Adya R et al (2013) Metformin increases the novel adipokine cartonectin/CTRP3 in women with polycystic ovary syndrome. J Clin Endocrinol Metab 98:E1891–E1900

    Article  CAS  PubMed  Google Scholar 

  95. Nakano Y, Tobe T, Choi-Miura NH, Mazda T, Tomita M (1996) Isolation and characterization of GBP28, a novel gelatin-binding protein purified from human plasma. J Biochem 120:803–812

    Article  CAS  PubMed  Google Scholar 

  96. Hu E, Liang P, Spiegelman BM (1996) AdipoQ is a novel adipose-specific gene dysregulated in obesity. J Biol Chem 271:10697–10703

    Article  CAS  PubMed  Google Scholar 

  97. Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J et al (1999) Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun 257:79–83

    Article  CAS  PubMed  Google Scholar 

  98. Scherer PE, Williams S, Fogliano M, Baldini G, Lodish HF (1995) A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem 270:26746–26749

    Article  CAS  PubMed  Google Scholar 

  99. Kadowaki T, Yamauchi T (2005) Adiponectin and adiponectin receptors. Endocr Rev 26:439–451

    Article  CAS  PubMed  Google Scholar 

  100. Matsuzawa Y, Funahashi T, Kihara S, Shimomura I (2004) Adiponectin and metabolic syndrome. Arterioscler Thromb Vasc Biol 24:29–33

    Article  CAS  PubMed  Google Scholar 

  101. Trujillo ME, Scherer PE (2006) Adipose tissue-derived factors: impact on health and disease. Endocr Rev 27:762–778

    Article  CAS  PubMed  Google Scholar 

  102. Chen MB, McAinch AJ, Macaulay SL, Castelli LA, O’Brien PE, Dixon JB et al (2005) Impaired activation of AMP-kinase and fatty acid oxidation by globular adiponectin in cultured human skeletal muscle of obese type 2 diabetics. J Clin Endocrinol Metab 90:3665–3672

    Article  CAS  PubMed  Google Scholar 

  103. Bottner A, Kratzsch J, Muller G, Kapellen TM, Bluher S, Keller E et al (2004) Gender differences of adiponectin levels develop during the progression of puberty and are related to serum androgen levels. J Clin Endocrinol Metab 89:4053–4061

    Article  PubMed  CAS  Google Scholar 

  104. Coppola A, Marfella R, Coppola L, Tagliamonte E, Fontana D, Liguori E et al (2009) Effect of weight loss on coronary circulation and adiponectin levels in obese women. Int J Cardiol 134:414–416

    Article  PubMed  Google Scholar 

  105. Stumvoll M, Tschritter O, Fritsche A, Staiger H, Renn W, Weisser M et al (2002) Association of the T-G polymorphism in adiponectin (exon 2) with obesity and insulin sensitivity: interaction with family history of type 2 diabetes. Diabetes 51:37–41

    Article  CAS  PubMed  Google Scholar 

  106. Vasseur F, Lepretre F, Lacquemant C, Froguel P (2003) The genetics of adiponectin. Curr Diab Rep 3:151–158

    Article  PubMed  Google Scholar 

  107. Lago F, Dieguez C, Gomez-Reino J, Gualillo O (2007) The emerging role of adipokines as mediators of inflammation and immune responses. Cytokine Growth Factor Rev 18:313–325

    Article  CAS  PubMed  Google Scholar 

  108. Kazumi T, Kawaguchi A, Sakai K, Hirano T, Yoshino G (2002) Young men with high-normal blood pressure have lower serum adiponectin, smaller LDL size, and higher elevated heart rate than those with optimal blood pressure. Diabetes Care 25:971–976

    Article  PubMed  Google Scholar 

  109. Furuhashi M, Ura N, Higashiura K, Miyazaki Y, Murakami H, Hyakukoku M et al (2005) Low adiponectin level in young normotensive men with a family history of essential hypertension. Hypertens Res 28:141–146

    Article  CAS  PubMed  Google Scholar 

  110. Lee HS, Lee M, Joung H (2007) Adiponectin represents an independent risk factor for hypertension in middle aged Korean women. Asia Pac J Clin Nutr 16:10–15

    PubMed  Google Scholar 

  111. Chow WS, Cheung BM, Tso AW, Xu A, Wat NM, Fong CH et al (2007) Hypoadiponectinemia as a predictor for the development of hypertension: a 5-year prospective study. Hypertension 49:1455–1461

    Article  CAS  PubMed  Google Scholar 

  112. Imatoh T, Miyazaki M, Momose Y, Tanihara S, Une H (2008) Adiponectin levels associated with the development of hypertension: a prospective study. Hypertens Res 31:229–233

    Article  CAS  PubMed  Google Scholar 

  113. Pischon T, Girman CJ, Hotamisligil GS, Rifai N, Hu FB, Rimm EB (2004) Plasma adiponectin levels and risk of myocardial infarction in men. JAMA 291:1730–1737

    Article  CAS  PubMed  Google Scholar 

  114. Wolk R, Berger P, Lennon RJ, Brilakis ES, Davison DE, Somers VK (2007) Association between plasma adiponectin levels and unstable coronary syndromes. Eur Heart J 28:292–298

    Article  CAS  PubMed  Google Scholar 

  115. Ouchi N, Shibata R, Walsh K (2006) Cardioprotection by adiponectin. Trends Cardiovasc Med 16:141–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Degawa-Yamauchi M, Moss KA, Bovenkerk JE, Shankar SS, Morrison CL, Lelliott CJ et al (2005) Regulation of adiponectin expression in human adipocytes: effects of adiposity, glucocorticoids, and tumor necrosis factor alpha. Obes Res 13:662–669

    Article  CAS  PubMed  Google Scholar 

  117. Ouchi N, Kihara S, Arita Y, Okamoto Y, Maeda K, Kuriyama H et al (2000) Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMP-dependent pathway. Circulation 102:1296–1301

    Article  CAS  PubMed  Google Scholar 

  118. Sell H, Dietze-Schroeder D, Eckardt K, Eckel J (2006) Cytokine secretion by human adipocytes is differentially regulated by adiponectin, AICAR, and troglitazone. Biochem Biophys Res Commun 343:700–706

    Article  CAS  PubMed  Google Scholar 

  119. Nilsson L, Binart N, Bohlooly YM, Bramnert M, Egecioglu E, Kindblom J et al (2005) Prolactin and growth hormone regulate adiponectin secretion and receptor expression in adipose tissue. Biochem Biophys Res Commun 331:1120–1126

    Article  CAS  PubMed  Google Scholar 

  120. Xu A, Chan KW, Hoo RL, Wang Y, Tan KC, Zhang J et al (2005) Testosterone selectively reduces the high molecular weight form of adiponectin by inhibiting its secretion from adipocytes. J Biol Chem 280:18073–18080

    Article  CAS  PubMed  Google Scholar 

  121. Combs TP, Wagner JA, Berger J, Doebber T, Wang WJ, Zhang BB et al (2002) Induction of adipocyte complement-related protein of 30 kilodaltons by PPARgamma agonists: a potential mechanism of insulin sensitization. Endocrinology 143:998–1007

    Article  CAS  PubMed  Google Scholar 

  122. Bauche IB, Ait El Mkadem S, Rezsohazy R, Funahashi T, Maeda N, Miranda LM et al (2006) Adiponectin downregulates its own production and the expression of its AdipoR2 receptor in transgenic mice. Biochem Biophys Res Commun 345:1414–1424

    Article  CAS  PubMed  Google Scholar 

  123. Glintborg D, Stoving RK, Hagen C, Hermann AP, Frystyk J, Veldhuis JD et al (2005) Pioglitazone treatment increases spontaneous growth hormone (GH) secretion and stimulated GH levels in polycystic ovary syndrome. J Clin Endocrinol Metab 90:5605–5612

    Article  CAS  PubMed  Google Scholar 

  124. Toulis KA, Goulis DG, Farmakiotis D, Georgopoulos NA, Katsikis I, Tarlatzis BC et al (2009) Adiponectin levels in women with polycystic ovary syndrome: a systematic review and a meta-analysis. Hum Reprod Update 15:297–307

    Article  CAS  PubMed  Google Scholar 

  125. Li S, Huang X, Zhong H, Peng Q, Chen S, Xie Y et al (2014) Low circulating adiponectin levels in women with polycystic ovary syndrome: an updated meta-analysis. Tumour Biol 35:3961–3973

    Article  CAS  PubMed  Google Scholar 

  126. Spranger J, Mohlig M, Wegewitz U, Ristow M, Pfeiffer AF, Schill T et al (2004) Adiponectin is independently associated with insulin sensitivity in women with polycystic ovary syndrome. Clin Endocrinol (Oxf) 61:738–746

    Article  CAS  Google Scholar 

  127. Koleva DI, Orbetzova MM, Nikolova JG, Tyutyundzhiev SB (2016) Adipokines and soluble cell adhesion molecules in insulin resistant and non-insulin resistant women with polycystic ovary syndrome. Arch Physiol Biochem 122:223–227

    Article  CAS  PubMed  Google Scholar 

  128. Pangaribuan B, Yusuf I, Mansyur M, Wijaya A (2011) Serum adiponectin and resistin in relation to insulin resistance and markers of hyperandrogenism in lean and obese women with polycystic ovary syndrome. Ther Adv Endocrinol Metab 2:235–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Tan BK, Chen J, Digby JE, Keay SD, Kennedy CR, Randeva HS (2006) Upregulation of adiponectin receptor 1 and 2 mRNA and protein in adipose tissue and adipocytes in insulin-resistant women with polycystic ovary syndrome. Diabetologia 49:2723–2728

    Article  CAS  PubMed  Google Scholar 

  130. Comim FV, Hardy K, Franks S (2013) Adiponectin and its receptors in the ovary: further evidence for a link between obesity and hyperandrogenism in polycystic ovary syndrome. PLoS One 8:e80416

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Ibanez L, Valls C, Marcos MV, Ong K, Dunger DB, De Zegher F (2004) Insulin sensitization for girls with precocious pubarche and with risk for polycystic ovary syndrome: effects of prepubertal initiation and postpubertal discontinuation of metformin treatment. J Clin Endocrinol Metab 89:4331–4337

    Article  CAS  PubMed  Google Scholar 

  132. Wang Y, Xie X, Zhu W (2010) Serum adiponectin and resistin levels in patients with polycystic ovarian syndrome and their clinical implications. J Huazhong Univ Sci Technol Med Sci 30:638–642

    Article  PubMed  CAS  Google Scholar 

  133. Yilmaz M, Bukan N, Demirci H, Ozturk C, Kan E, Ayvaz G et al (2009) Serum resistin and adiponectin levels in women with polycystic ovary syndrome. Gynecol Endocrinol 25:246–252

    Article  CAS  PubMed  Google Scholar 

  134. Arikan S, Bahceci M, Tuzcu A, Kale E, Gokalp D (2010) Serum resistin and adiponectin levels in young non-obese women with polycystic ovary syndrome. Gynecol Endocrinol 26:161–166

    Article  CAS  PubMed  Google Scholar 

  135. Fukuhara A, Matsuda M, Nishizawa M, Segawa K, Tanaka M, Kishimoto K et al (2005) Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science 307:426–430

    Article  CAS  PubMed  Google Scholar 

  136. Plati E, Kouskouni E, Malamitsi-Puchner A, Boutsikou M, Kaparos G, Baka S (2010) Visfatin and leptin levels in women with polycystic ovaries undergoing ovarian stimulation. Fertil Steril 94:1451–1456

    Article  CAS  PubMed  Google Scholar 

  137. Lajunen TK, Purhonen AK, Haapea M, Ruokonen A, Puukka K, Hartikainen AL et al (2012) Full-length visfatin levels are associated with inflammation in women with polycystic ovary syndrome. Eur J Clin Investig 42:321–328

    Article  CAS  Google Scholar 

  138. Dambala K, Vavilis D, Bili E, Goulis DG, Tarlatzis BC (2017) Serum visfatin, vascular endothelial growth factor and matrix metalloproteinase-9 in women with polycystic ovary syndrome. Gynecol Endocrinol 16:1–5. doi:10.1080/09513590.2017.1296425

    Article  CAS  Google Scholar 

  139. Coppack SW (2001) Pro-inflammatory cytokines and adipose tissue. Proc Nutr Soc 60:349–356

    Article  CAS  PubMed  Google Scholar 

  140. Hotamisligil GS, Shargill NS, Spiegelman BM (1993) Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259:87–91

    Article  CAS  PubMed  Google Scholar 

  141. Katsuki A, Sumida Y, Murashima S, Murata K, Takarada Y, Ito K et al (1998) Serum levels of tumor necrosis factor-alpha are increased in obese patients with noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab 83:859–862

    CAS  PubMed  Google Scholar 

  142. Ruan H, Lodish HF (2003) Insulin resistance in adipose tissue: direct and indirect effects of tumor necrosis factor-alpha. Cytokine Growth Factor Rev 14:447–455

    Article  CAS  PubMed  Google Scholar 

  143. Juge-Aubry CE, Somm E, Pernin A, Alizadeh N, Giusti V, Dayer JM et al (2005) Adipose tissue is a regulated source of interleukin-10. Cytokine 29:270–274

    CAS  PubMed  Google Scholar 

  144. Esposito K, Nappo F, Marfella R, Giugliano G, Giugliano F, Ciotola M et al (2002) Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress. Circulation 106:2067–2072

    Article  CAS  PubMed  Google Scholar 

  145. Dahlman I, Forsgren M, Sjogren A, Nordstrom EA, Kaaman M, Naslund E et al (2006) Downregulation of electron transport chain genes in visceral adipose tissue in type 2 diabetes independent of obesity and possibly involving tumor necrosis factor-alpha. Diabetes 55:1792–1799

    Article  CAS  PubMed  Google Scholar 

  146. Sayin NC, Gucer F, Balkanli-Kaplan P, Yuce MA, Ciftci S, Kucuk M et al (2003) Elevated serum TNF-alpha levels in normal-weight women with polycystic ovaries or the polycystic ovary syndrome. J Reprod Med 48:165–170

    CAS  PubMed  Google Scholar 

  147. Araya AV, Aguirre A, Romero C, Miranda C, Molina MC, Ferreira A (2002) Evaluation of tumor necrosis factor alpha production in ex vivo short term cultured whole blood from women with polycystic ovary syndrome. Eur Cytokine Netw 13:419–424

    CAS  PubMed  Google Scholar 

  148. Olszanecka-Glinianowicz M, Banas M, Zahorska-Markiewicz B, Janowska J, Kocelak P, Madej P et al (2007) Is the polycystic ovary syndrome associated with chronic inflammation per se? Eur J Obstet Gynecol Reprod Biol 133:197–202

    Article  CAS  PubMed  Google Scholar 

  149. Gonzalez F, Thusu K, Abdel-Rahman E, Prabhala A, Tomani M, Dandona P (1999) Elevated serum levels of tumor necrosis factor alpha in normal-weight women with polycystic ovary syndrome. Metabolism 48:437–441

    Article  CAS  PubMed  Google Scholar 

  150. Gao L, Gu Y, Yin X (2016) High serum tumor necrosis factor-alpha levels in women with polycystic ovary syndrome: a meta-analysis. PLoS One 11:e0164021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Glintborg D, Andersen M, Richelsen B, Bruun JM (2009) Plasma monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1alpha are increased in patients with polycystic ovary syndrome (PCOS) and associated with adiposity, but unaffected by pioglitazone treatment. Clin Endocrinol (Oxf) 71:652–658

    Article  CAS  Google Scholar 

  152. Legro RS, Gnatuk CL, Kunselman AR, Dunaif A (2005) Changes in glucose tolerance over time in women with polycystic ovary syndrome: a controlled study. J Clin Endocrinol Metab 90:3236–3242

    Article  CAS  PubMed  Google Scholar 

  153. Norman RJ, Masters L, Milner CR, Wang JX, Davies MJ (2001) Relative risk of conversion from normoglycaemia to impaired glucose tolerance or non-insulin dependent diabetes mellitus in polycystic ovarian syndrome. Hum Reprod 16:1995–1998

    Article  CAS  PubMed  Google Scholar 

  154. Morgan CL, Jenkins-Jones S, Currie CJ, Rees DA (2012) Evaluation of adverse outcome in young women with polycystic ovary syndrome versus matched, reference controls: a retrospective, observational study. J Clin Endocrinol Metab 97:3251–3260

    Article  CAS  PubMed  Google Scholar 

  155. Mirzaei F, Kazemi N (2008) Prevalence of polycystic ovary syndrome in women with type 2 diabetes in Kerman, Iran. Metab Syndr Relat Disord 6:215–217

    Article  CAS  PubMed  Google Scholar 

  156. Sim SY, Chin SL, Tan JL, Brown SJ, Cussons AJ, Stuckey BG (2016) Polycystic ovary syndrome in type 2 diabetes: does it predict a more severe phenotype? Fertil Steril 106:1258–1263

    Article  PubMed  Google Scholar 

  157. Mendoza N (2011) Common genetic aspects between polycystic ovary syndrome and diabetes mellitus. Curr Diabetes Rev 7:377–391

    Article  CAS  PubMed  Google Scholar 

  158. Saxena R, Welt CK (2013) Polycystic ovary syndrome is not associated with genetic variants that mark risk of type 2 diabetes. Acta Diabetol 50:451–457

    Article  CAS  PubMed  Google Scholar 

  159. Peppard HR, Marfori J, Iuorno MJ, Nestler JE (2001) Prevalence of polycystic ovary syndrome among premenopausal women with type 2 diabetes. Diabetes Care 24:1050–1052

    Article  CAS  PubMed  Google Scholar 

  160. Kelestimur F, Unluhizarci K, Baybuga H, Atmaca H, Bayram F, Sahin Y (2006) Prevalence of polycystic ovarian changes and polycystic ovary syndrome in premenopausal women with treated type 2 diabetes mellitus. Fertil Steril 86:405–410

    Article  PubMed  Google Scholar 

  161. Clark JM, Diehl AM (2003) Nonalcoholic fatty liver disease: an underrecognized cause of cryptogenic cirrhosis. JAMA 289:3000–3004

    Article  PubMed  Google Scholar 

  162. Bedogni G, Miglioli L, Masutti F, Tiribelli C, Marchesini G, Bellentani S (2005) Prevalence of and risk factors for nonalcoholic fatty liver disease: the Dionysos nutrition and liver study. Hepatology 42:44–52

    Article  PubMed  Google Scholar 

  163. Brzozowska MM, Ostapowicz G, Weltman MD (2009) An association between non-alcoholic fatty liver disease and polycystic ovarian syndrome. J Gastroenterol Hepatol 24:243–247

    Article  CAS  PubMed  Google Scholar 

  164. Setji TL, Holland ND, Sanders LL, Pereira KC, Diehl AM, Brown AJ (2006) Nonalcoholic steatohepatitis and nonalcoholic fatty liver disease in young women with polycystic ovary syndrome. J Clin Endocrinol Metab 91:1741–1747

    Article  CAS  PubMed  Google Scholar 

  165. Economou F, Xyrafis X, Livadas S, Androulakis II, Argyrakopoulou G, Christakou CD et al (2009) In overweight/obese but not in normal-weight women, polycystic ovary syndrome is associated with elevated liver enzymes compared to controls. Hormones (Athens) 8:199–206

    Article  Google Scholar 

  166. Rector RS, Thyfault JP, Wei Y, Ibdah JA (2008) Non-alcoholic fatty liver disease and the metabolic syndrome: an update. World J Gastroenterol 14:185–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Expert Panel on Detection E, Treatment of High Blood Cholesterol in A (2001) Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol In adults (adult treatment panel III). JAMA 285:2486–2497

    Article  Google Scholar 

  168. Alberti KG (2007) Screening and diagnosis of prediabetes: where are we headed? Diabetes Obes Metab 9(Suppl 1):12–16

    Article  CAS  PubMed  Google Scholar 

  169. Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA et al (2009) Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120:1640–1645

    Article  CAS  PubMed  Google Scholar 

  170. Alberti KG, Zimmet PZ (1998) Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med 15:539–553

    Article  CAS  PubMed  Google Scholar 

  171. National Cholesterol Education Program Expert Panel on Detection E, Treatment of High Blood Cholesterol in A (2002) Third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III) final report. Circulation 106:3143–3421

    Google Scholar 

  172. Alberti KG, Zimmet P, Shaw J, Group IDFETFC (2005) The metabolic syndrome—a new worldwide definition. Lancet 366:1059–1062

    Article  Google Scholar 

  173. Delitala AP, Fanciulli G, Pes GM, Maioli M, Delitala G (2017) Thyroid hormones, metabolic syndrome and its components. Endocr Metab Immune Disord Drug Targets. doi:10.2174/1871530317666170320105221

    PubMed  Google Scholar 

  174. Niafar M, Pourafkari L, Porhomayon J, Nader N (2016) A systematic review of GLP-1 agonists on the metabolic syndrome in women with polycystic ovaries. Arch Gynecol Obstet 293:509–515

    Article  CAS  PubMed  Google Scholar 

  175. Fernandez-Miro M, Chillaron JJ, Pedro-Botet J (2016) Testosterone deficiency, metabolic syndrome and diabetes mellitus. Med Clin (Barc) 146:69–73

    Article  Google Scholar 

  176. Ehrmann DA, Liljenquist DR, Kasza K, Azziz R, Legro RS, Ghazzi MN et al (2006) Prevalence and predictors of the metabolic syndrome in women with polycystic ovary syndrome. J Clin Endocrinol Metab 91:48–53

    Article  CAS  PubMed  Google Scholar 

  177. Coviello AD, Legro RS, Dunaif A (2006) Adolescent girls with polycystic ovary syndrome have an increased risk of the metabolic syndrome associated with increasing androgen levels independent of obesity and insulin resistance. J Clin Endocrinol Metab 91:492–497

    Article  CAS  PubMed  Google Scholar 

  178. Diamanti-Kandarakis E, Papavassiliou AG, Kandarakis SA, Chrousos GP (2007) Pathophysiology and types of dyslipidemia in PCOS. Trends Endocrinol Metab 18:280–285

    Article  CAS  PubMed  Google Scholar 

  179. Diamanti-Kandarakis E, Alexandraki K, Bergiele A, Kandarakis H, Mastorakos G, Aessopos A (2004) Presence of metabolic risk factors in non-obese PCOS sisters: evidence of heritability of insulin resistance. J Endocrinol Invest 27:931–936

    Article  CAS  PubMed  Google Scholar 

  180. Diamanti-Kandarakis E, Paterakis T, Kandarakis HA (2006) Indices of low-grade inflammation in polycystic ovary syndrome. Ann N Y Acad Sci 1092:175–186

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Ph. Doctor School in Biomedical Sciences, Address in Gender Medicine, Men, Woman and Child, Sassari University, Italy, supported the study.

Author information

Authors and Affiliations

Authors

Contributions

APD: wrote the manuscript. GC: reviewed and edited the manuscript. GD: reviewed and edited the manuscript. PLC: reviewed and edited the manuscript. SD: reviewed and edited the manuscript.

Corresponding author

Correspondence to Alessandro P. Delitala.

Ethics declarations

Funding

Nothing to declare.

Conflict of interest

Alessandro P. Delitala declares that he has no conflict of interest. Giampiero Capobianco declares that he has no conflict of interest. Giuseppe Delitala declares that he has no conflict of interest. Pier Luigi Cherchi declares that he has no conflict of interest. Salvatore Dessole declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delitala, A.P., Capobianco, G., Delitala, G. et al. Polycystic ovary syndrome, adipose tissue and metabolic syndrome. Arch Gynecol Obstet 296, 405–419 (2017). https://doi.org/10.1007/s00404-017-4429-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-017-4429-2

Keywords

Navigation