Skip to main content

Endometrial thickness influences neonatal birth weight in pregnancies with obstetric complications achieved after fresh IVF–ICSI cycles



Pregnancy-associated complications, duration of gestation and parity are well-known predictors of neonatal birth weight. Assisted reproductive technology (ART) affects neonatal birth weight as well. Endometrial thickness as measured on the day of HCG triggering may therefore impact on the neonatal birth weight.


The data of 764 singleton deliveries achieved after fresh transfer between November 1997 and 2014 were collected retrospectively with the intention to analyze the relationship of maternal and neonatal characteristics with endometrial thickness and the possible predictive value of endometrial thickness on neonatal birth weight.


Higher maternal age (p < 0.001), diminished ovarian reserve (p < 0.001), endometriosis (p = 0.008) and hypogonadotropic hypogonadism (p < 0.001) predicted thin endometrium. Neonatal birth weight (p = 0.004), longer duration of pregnancy (p = 0.008), parity (p = 0.026) and higher maternal BMI (p = 0.003) were correlated significantly with the degree of endometrial proliferation. Endometrial thickness strongly predicted neonatal birth weight (p = 0.004). After adjusting regression analysis for maternal age and BMI, parity, neonatal gender and pregnancy duration, endometrial thickness remained predictive for neonatal birth weight in pregnancies with obstetric complications (p = 0.017). In uneventful pregnancies duration and parity are determinants of neonatal birth weight.


Our findings suggest that endometrial thickness is an additional ART-related factor influencing neonatal birth weight. This finding should be confirmed in large cohort studies.

This is a preview of subscription content, access via your institution.


  1. 1.

    Weissman A, Gotlieb L, Casper RF (1999) The detrimental effect of increased endometrial thickness on implantation and pregnancy rates and outcome in an in vitro fertilization program. Fertil Steril 71:147–149

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    De Geyter C, Schmitter M, De Geyter M, Nieschlag E, Holzgreve W, Schneider HP (2000) Prospective evaluation of the ultrasound appearance of the endometrium in a cohort of 1,186 infertile women. Fertil Steril 73:106–113

    Article  PubMed  Google Scholar 

  3. 3.

    Khalifa E, Brzyski RG, Oehninger S, Acosta AA, Muasher SJ (1992) Sonographic appearance of the endometrium: the predictive value for the outcome of in vitro fertilization in stimulated cycles. Hum Reprod 7:677–680

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Friedler S, Schenker JG, Herman A, Lewin A (1996) The role of ultrasonography in the evaluation of endometrial receptivity following assisted reproductive treatments: a critical review. Hum Reprod Update 2:323–335

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Chen SL, Wu FR, Luo C, Chen X, Shi XY, Zheng HY et al (2010) Combined analysis of endometrial thickness and pattern in predicting outcome of in vitro fertilization and embryo transfer: a retrospective cohort study. Reprod Biol Endocrinol 8:30

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Ng EH, Yeung WS, Ho PC (2009) Endometrial and subendometrial vascularity are significantly lower in patients with endometrial volume 2.5 ml or less. Reprod Biomed Online 18:262–268

    Article  PubMed  Google Scholar 

  7. 7.

    Hackeloer BJ (1984) The role of ultrasound in female infertility management. Ultrasound Med Biol 10:35–50

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Glissant A, de Mouzon J, Frydman R (1985) Ultrasound study of the endometrium during in vitro fertilization cycles. Fertil Steril 44:786–790

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Basir GS, O WS, So WW, Ng EH, Ho PC (2002) Evaluation of cycle-to-cycle variation of endometrial responsiveness using transvaginal sonography in women undergoing assisted reproduction. Ultrasound Obstet Gynecol 19:484–489

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Sher G, Herbert C, Maassarani G, Jacobs MH (1991) Assessment of the late proliferative phase endometrium by ultrasonography in patients undergoing in vitro fertilization and embryo transfer (IVF/ET). Hum Reprod 6:232–237

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Al-Ghamdi A, Coskun S, Al-Hassan S, Al-Rejjal R, Awartani K (2008) The correlation between endometrial thickness and outcome of in vitro fertilization and embryo transfer (IVF-ET) outcome. Reprod Biol Endocrinol 6:37

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Kasius A, Smit JG, Torrance HL, Eijkemans MJ, Mol BW, Opmeer BC et al (2014) Endometrial thickness and pregnancy rates after IVF: a systematic review and meta-analysis. Hum Reprod Update 20:530–541

    Article  PubMed  Google Scholar 

  13. 13.

    Kovacs P, Matyas S, Boda K, Kaali SG (2003) The effect of endometrial thickness on IVF/ICSI outcome. Hum Reprod 18:2337–2341

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Zhao J, Zhang Q, Wang Y, Li Y (2014) Endometrial pattern, thickness and growth in predicting pregnancy outcome following 3319 IVF cycle. Reprod Biomed Online 29:291–298

    Article  PubMed  Google Scholar 

  15. 15.

    Fang R, Cai L, Xiong F, Chen J, Yang W, Zhao X (2016) The effect of endometrial thickness on the day of hCG administration on pregnancy outcome in the first fresh IVF/ICSI cycle. Gynecol Endocrinol 32:473–476

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Yuan X, Saravelos SH, Wang Q, Xu Y, Li TC, Zhou C (2016) Endometrial thickness as a predictor of pregnancy outcomes in 10787 fresh IVF–ICSI cycles. Reprod Biomed Online 33:197–205

    Article  PubMed  Google Scholar 

  17. 17.

    De Geyter C, De Geyter M, Steimann S, Zhang H, Holzgreve W (2006) Comparative birth weights of singletons born after assisted reproduction and natural conception in previously infertile women. Hum Reprod 21:705–712

    Article  PubMed  Google Scholar 

  18. 18.

    Ishihara O, Araki R, Kuwahara A, Itakura A, Saito H, Adamson GD (2014) Impact of frozen-thawed single-blastocyst transfer on maternal and neonatal outcome: an analysis of 277,042 single-embryo transfer cycles from 2008 to 2010 in Japan. Fertil Steril 101:128–133

    Article  PubMed  Google Scholar 

  19. 19.

    Pinborg A, Loft A, Aaris Henningsen AK, Rasmussen S, Andersen AN (2010) Infant outcome of 957 singletons born after frozen embryo replacement: the Danish National Cohort Study 1995–2006. Fertil Steril 94:1320–1327

    Article  PubMed  Google Scholar 

  20. 20.

    Shih W, Rushford DD, Bourne H, Garrett C, McBain JC, Healy DL et al (2008) Factors affecting low birthweight after assisted reproduction technology: difference between transfer of fresh and cryopreserved embryos suggests an adverse effect of oocyte collection. Hum Reprod 23:1644–1653

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Cooper AR, O’Neill KE, Allsworth JE, Jungheim ES, Odibo AO, Gray DL et al (2011) Smaller fetal size in singletons after infertility therapies: the influence of technology and the underlying infertility. Fertil Steril 96:1100–1106

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Henningsen AK, Pinborg A, Lidegaard O, Vestergaard C, Forman JL, Andersen AN (2011) Perinatal outcome of singleton siblings born after assisted reproductive technology and spontaneous conception: Danish national sibling-cohort study. Fertil Steril 95:959–963

    Article  PubMed  Google Scholar 

  23. 23.

    Levi Setti PE, Albani E, Morenghi E, Morreale G, Delle Piane L, Scaravelli G et al (2013) Comparative analysis of fetal and neonatal outcomes of pregnancies from fresh and cryopreserved/thawed oocytes in the same group of patients. Fertil Steril 100:396–401

    Article  PubMed  Google Scholar 

  24. 24.

    Schieve LA, Meikle SF, Ferre C, Peterson HB, Jeng G, Wilcox LS (2002) Low and very low birth weight in infants conceived with use of assisted reproductive technology. N Engl J Med 346:731–737

    Article  PubMed  Google Scholar 

  25. 25.

    Wennerholm UB, Henningsen AK, Romundstad LB, Bergh C, Pinborg A, Skjaerven R et al (2013) Perinatal outcomes of children born after frozen-thawed embryo transfer: a Nordic cohort study from the CoNARTaS group. Hum Reprod 28:2545–2553

    Article  PubMed  Google Scholar 

  26. 26.

    Nakashima A, Araki R, Tani H, Ishihara O, Kuwahara A, Irahara M et al (2013) Implications of assisted reproductive technologies on term singleton birth weight: an analysis of 25,777 children in the national assisted reproduction registry of Japan. Fertil Steril 99:450–455

    Article  PubMed  Google Scholar 

  27. 27.

    Sazonova A, Kallen K, Thurin-Kjellberg A, Wennerholm UB, Bergh C (2011) Factors affecting obstetric outcome of singletons born after IVF. Hum Reprod 26:2878–2886

    Article  PubMed  Google Scholar 

  28. 28.

    Tomic V, Tomic J (2011) Neonatal outcome of IVF singletons versus naturally conceived in women aged 35 years and over. Arch Gynecol Obstet 284:1411–1416

    Article  PubMed  Google Scholar 

  29. 29.

    Qin JB, Sheng XQ, Wu D, Gao SY, You YP, Yang TB et al (2017) Worldwide prevalence of adverse pregnancy outcomes among singleton pregnancies after in vitro fertilization/intracytoplasmic sperm injection: a systematic review and meta-analysis. Arch Gynecol Obstet 295:285–301

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Khosla S, Dean W, Brown D, Reik W, Feil R (2001) Culture of preimplantation mouse embryos affects fetal development and the expression of imprinted genes. Biol Reprod 64:918–926

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Pinborg A, Wennerholm UB, Romundstad LB, Loft A, Aittomaki K, Soderstrom-Anttila V et al (2013) Why do singletons conceived after assisted reproduction technology have adverse perinatal outcome? Systematic review and meta-analysis. Hum Reprod Update 19:87–104

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Vergouw CG, Kostelijk EH, Doejaaren E, Hompes PG, Lambalk CB, Schats R (2012) The influence of the type of embryo culture medium on neonatal birthweight after single embryo transfer in IVF. Hum Reprod 27:2619–2626

    Article  PubMed  Google Scholar 

  33. 33.

    Carrasco B, Boada M, Rodriguez I, Coroleu B, Barri PN, Veiga A (2013) Does culture medium influence offspring birth weight? Fertil Steril 100:1283–1288

    Article  PubMed  Google Scholar 

  34. 34.

    Lin S, Li M, Lian Y, Chen L, Liu P (2013) No effect of embryo culture media on birthweight and length of newborns. Hum Reprod 28:1762–1767

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Lemmen JG, Pinborg A, Rasmussen S, Ziebe S (2014) Birthweight distribution in ART singletons resulting from embryo culture in two different culture media compared with the national population. Hum Reprod 29:2326–2332

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Zandstra H, Van Montfoort AP, Dumoulin JC (2015) Does the type of culture medium used influence birthweight of children born after IVF? Hum Reprod 30:530–542

    Article  PubMed  Google Scholar 

  37. 37.

    Gu F, Deng M, Gao J, Wang Z, Ding C, Xu Y et al (2016) The effects of embryo culture media on the birthweight of singletons via fresh or frozen-thawed embryo transfer: a large-scale retrospective study. BMC Pregnancy Childbirth 16:270

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    De Sutter P, Delbaere I, Gerris J, Verstraelen H, Goetgeluk S, Van der Elst J et al (2006) Birthweight of singletons after assisted reproduction is higher after single- than after double-embryo transfer. Hum Reprod 21:2633–2637

    Article  PubMed  Google Scholar 

  39. 39.

    Delbaere I, Vansteelandt S, Gerris J, De Sutter P, De Bacquer D, Temmerman M (2008) Human chorionic gonadotropin levels in early IVF/ICSI pregnancies are higher in singletons after single embryo transfer compared with singletons after double embryo transfer. Hum Reprod 23:2421–2426

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Griesinger G, Kolibianakis EM, Diedrich K, Ludwig M (2008) Ovarian stimulation for IVF has no quantitative association with birthweight: a registry study. Hum Reprod 23:2549–2554

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Chung K, Coutifaris C, Chalian R, Lin K, Ratcliffe SJ, Castelbaum AJ et al (2006) Factors influencing adverse perinatal outcomes in pregnancies achieved through use of in vitro fertilization. Fertil Steril 86:1634–1641

    Article  PubMed  Google Scholar 

  42. 42.

    Barker DJ, Winter PD, Osmond C, Margetts B, Simmonds SJ (1989) Weight in infancy and death from ischaemic heart disease. Lancet 2:577–580

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Andersson SW, Lapidus L, Niklasson A, Hallberg L, Bengtsson C, Hulthen L (2000) Blood pressure and hypertension in middle-aged women in relation to weight and length at birth: a follow-up study. J Hypertens 18:1753–1761

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Barker DJ, Gluckman PD, Godfrey KM, Harding JE, Owens JA, Robinson JS (1993) Fetal nutrition and cardiovascular disease in adult life. Lancet 341:938–941

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Law CM, Shiell AW (1996) Is blood pressure inversely related to birth weight? The strength of evidence from a systematic review of the literature. J Hypertens 14:935–941

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    De Geyter C, Fehr P, Moffat R, Gruber IM, von Wolff M (2015) Twenty years’ experience with the Swiss data registry for assisted reproductive medicine: outcomes, key trends and recommendations for improved practice. Swiss Med Wkly 145:w14087

    PubMed  Google Scholar 

  47. 47.

    Van den Bergh M, Hohl MK, De Geyter C, Stalberg AM, Limoni C (2005) Ten years of Swiss National IVF Register FIVNAT-CH. Are we making progress? Reprod Biomed Online 11:632–640

    Article  PubMed  Google Scholar 

  48. 48.

    Germond M, Senn A (1999) A law affecting medically assisted procreation is on the way in Switzerland. J Assist Reprod Genet 16:341–343

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Matalliotakis IM, Cakmak H, Mahutte N, Fragouli Y, Arici A, Sakkas D (2007) Women with advanced-stage endometriosis and previous surgery respond less well to gonadotropin stimulation, but have similar IVF implantation and delivery rates compared with women with tubal factor infertility. Fertil Steril 88:1568–1572

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Douchi T, Yoshinaga M, Katanozaka M, Mitani M, Nagata Y (1998) Relationship between body mass index and transvaginal ultrasonographic endometrial thickness in postmenopausal women. Acta Obstet Gynecol Scand 77:905–908

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Casper RF (2011) It’s time to pay attention to the endometrium. Fertil Steril 96:519–521

    Article  PubMed  Google Scholar 

  52. 52.

    Otto T, Gellhaus A, Luschen N, Scheidler J, Bendix I, Dunk C et al (2015) Oxygen sensitivity of placental trophoblast connexins 43 and 46: a role in preeclampsia? J Cell Biochem 116:2924–2937

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Pandey S, Shetty A, Hamilton M, Bhattacharya S, Maheshwari A (2012) Obstetric and perinatal outcomes in singleton pregnancies resulting from IVF/ICSI: a systematic review and meta-analysis. Hum Reprod Update 18:485–503

    Article  PubMed  Google Scholar 

  54. 54.

    Wang YA, Sullivan EA, Black D, Dean J, Bryant J, Chapman M (2005) Preterm birth and low birth weight after assisted reproductive technology-related pregnancy in Australia between 1996 and 2000. Fertil Steril 83:1650–1658

    Article  PubMed  Google Scholar 

Download references

Author information




R Moffat: Data collection, manuscript writing. S Beutler: Project development, data collection, manuscript writing. A Schötzau: Data analysis. M De Geyter: Data collection. C De Geyter: Project development, manuscript writing/editing.

Corresponding author

Correspondence to Rebecca Moffat.

Ethics declarations


RM was awarded an exchange grant to the Université Paris Descartes, France, by the University of Basel, Switzerland. This study was also supported by the Repronatal Foundation, Basel, Switzerland.

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

The study protocol was approved by the institutional ethics committee.

Informed consent

According to Swiss legislation informed consent must not be obtained for retrospective data analysis if it is disproportionately difficult to obtain consent and the interests of research outweigh the interests of the person concerned.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moffat, R., Beutler, S., Schötzau, A. et al. Endometrial thickness influences neonatal birth weight in pregnancies with obstetric complications achieved after fresh IVF–ICSI cycles. Arch Gynecol Obstet 296, 115–122 (2017).

Download citation


  • Endometrial thickness
  • Neonatal birth weight
  • Assisted reproduction
  • Ovarian hyperstimulation
  • Obstetrical outcome