Skip to main content

Advertisement

Log in

Prenatal diagnosis of fetal akinesia deformation sequence (FADS): a study of 79 consecutive cases

  • Maternal-Fetal Medicine
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

Fetal akinesia deformation sequence (FADS) is a clinically and genetically heterogenous disorder. In this study, the different sonographic abnormalities are described in a larger number of affected fetuses.

Methods

This retrospective study included 79 cases of suspected FADS observed in our tertiary referral center between January 2001 and February 2015. Electronic stored reports and images of the examination were reviewed as well as autopsy reports and pediatric charts.

Results

In the study population (mean gestational age 23 + 4 weeks) consanguinity, multiple miscarriages or positive family history were present in 31.6 % of cases. Abnormalities of the facial profile (58.3 %) and ankle joint (83.6 %) were detected in the majority of cases. Contractures variably involved knee-, ankle-, wrist- and elbow joint and fingers with no distinct patterns. Additional malformations, most commonly of the brain, were found in 44.3 % of cases. Diagnosis before 20 weeks was associated with nuchal edema in 62.5 and hydrops in 31.3 %. In fetuses evaluated later than 24 weeks, IUGR, increased amniotic fluid or thorax hypoplasia were diagnosed, in 31, 58.8 and 37.9 %, respectively. Termination of pregnancy was requested in 86.1 %, 11 (13.9 %) children were live born. No underlying genetic cause was established, but in one asymptomatic mother myasthenia gravis was revealed.

Conclusions

Fetal akinesia presents with heterogeneous sonographic findings, mostly affecting the profile, elbow-, knee-, ankle joint, wrists and fingers; in most of cases of sporadic nature. Whereas hydrops fetalis and nuchal edema were earlier signs, thorax hypoplasia, polyhydramnios and IUGR were found later in pregnancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Moessinger AC (1983) Fetal akinesia deformation sequence: an animal model. Pediatrics 72:857–863

    CAS  PubMed  Google Scholar 

  2. Hall JG (1986) Diagnostic approaches and prognosis in arthrogryposis (congenital contractures). Pathologica 78:701–708

    CAS  PubMed  Google Scholar 

  3. Pena SD, Shokeir MH (1974) Syndrome of camptodactyly, multiple ankyloses, facial anomalies, and pulmonary hypoplasia: a lethal condition. J Pediatr 85:373–375

    Article  CAS  PubMed  Google Scholar 

  4. Hall JG (2014) Arthrogryposis (multiple congenital contractures): diagnostic approach to etiology, classification, genetics, and general principles. Eur J Med Genet 57:464–472

    Article  PubMed  Google Scholar 

  5. Kalampokas E, Kalampokas T, Sofoudis C et al (2012) Diagnosing arthrogryposis multiplex congenita: a review. ISRN Obstet Gynecol 2012:264918

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ravenscroft G, Sollis E, Charles AK et al (2011) Fetal akinesia: review of the genetics of the neuromuscular causes. J Med Genet 48:793–801

    Article  CAS  PubMed  Google Scholar 

  7. Hoellen F, Schroer A, Kelling K et al (2011) Arthrogryposis multiplex congenita and Pena–Shokeir phenotype: challenge of prenatal diagnosis—report of 21 cases, antenatal findings and review. Fetal Diagn Ther 30:289–298

    Article  PubMed  Google Scholar 

  8. Dane B, Dane C, Aksoy F et al (2009) Arthrogryposis multiplex congenita: analysis of twelve cases. Clin Exp Obstet Gynecol 36:259–262

    CAS  PubMed  Google Scholar 

  9. Hyett J, Noble P, Sebire NJ et al (1997) Lethal congenital arthrogryposis presents with increased nuchal translucency at 10–14 weeks of gestation. Ultrasound Obstet Gynecol 9:310–313

    Article  CAS  PubMed  Google Scholar 

  10. Paladini D, Tartaglione A, Agangi A et al (2001) Pena–Shokeir phenotype with variable onset in three consecutive pregnancies. Ultrasound Obstet Gynecol 17:163–165

    Article  CAS  PubMed  Google Scholar 

  11. Witters I, Moerman P, Fryns JP (2002) Fetal akinesia deformation sequence: a study of 30 consecutive in utero diagnoses. Am J Med Genet 113:23–28

    Article  PubMed  Google Scholar 

  12. Rink BD (2011) Arthrogryposis: a review and approach to prenatal diagnosis. Obstet Gynecol Surv 66:369–377

    Article  PubMed  Google Scholar 

  13. Michalk A, Stricker S, Becker J et al (2008) Acetylcholine receptor pathway mutations explain various fetal akinesia deformation sequence disorders. Am J Hum Genet 82:464–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hoffmann K, Muller JS, Stricker S et al (2006) Escobar syndrome is a prenatal myasthenia caused by disruption of the acetylcholine receptor fetal gamma subunit. Am J Hum Genet 79:303–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vogt J, Morgan NV, Rehal P et al (2012) CHRNG genotype-phenotype correlations in the multiple pterygium syndromes. J Med Genet 49:21–26

    Article  CAS  PubMed  Google Scholar 

  16. Chen CP (2012) Prenatal diagnosis and genetic analysis of fetal akinesia deformation sequence and multiple pterygium syndrome associated with neuromuscular junction disorders: a review. Taiwan J Obstet Gynecol 51:12–17

    Article  PubMed  Google Scholar 

  17. McKie AB, Alsaedi A, Vogt J et al (2014) Germline mutations in RYR1 are associated with foetal akinesia deformation sequence/lethal multiple pterygium syndrome. Acta Neuropathol Commun 2:148

    Article  PubMed  PubMed Central  Google Scholar 

  18. Vogt J, Morgan NV, Marton T et al (2009) Germline mutation in DOK7 associated with fetal akinesia deformation sequence. J Med Genet 46:338–340

    Article  CAS  PubMed  Google Scholar 

  19. Tan-Sindhunata MB, Mathijssen IB, Smit M et al (2015) Identification of a Dutch founder mutation in MUSK causing fetal akinesia deformation sequence. Eur J Hum Genet 23:1151–1157

    Article  CAS  PubMed  Google Scholar 

  20. Wilbe M, Ekvall S, Eurenius K et al (2015) MuSK: a new target for lethal fetal akinesia deformation sequence (FADS). J Med Genet 52:195–202

    Article  CAS  PubMed  Google Scholar 

  21. Monnier N, Lunardi J, Marty I et al (2009) Absence of beta-tropomyosin is a new cause of Escobar syndrome associated with nemaline myopathy. Neuromuscul Disord 19:118–123

    Article  PubMed  Google Scholar 

  22. Polizzi A, Huson SM, Vincent A (2000) Teratogen update: maternal myasthenia gravis as a cause of congenital arthrogryposis. Teratology 62:332–341

    Article  CAS  PubMed  Google Scholar 

  23. Hoff JM, Daltveit AK, Gilhus NE (2006) Artrogryposis multiplex congenita—rare fetal condition caused by maternal myasthenia gravis. Acta Neurol Scand Suppl 183:26–27

    Article  CAS  PubMed  Google Scholar 

  24. Dalton P, Clover L, Wallerstein R et al (2006) Fetal arthrogryposis and maternal serum antibodies. Neuromuscul Disord 16:481–491

    Article  PubMed  Google Scholar 

  25. Hall JG (2013) Uterine structural anomalies and arthrogryposis-death of an urban legend. Am J Med Genet A 161A:82–88

    Article  PubMed  Google Scholar 

  26. Mayumi M, Obata-Yasuoka M, Ogura T et al (2013) Discordance in Pena–Shokeir phenotype/fetal akinesia deformation sequence in a monoamniotic twin. J Obstet Gynaecol Res 39:344–346

    Article  PubMed  Google Scholar 

  27. Ho NC (2000) Monozygotic twins with fetal akinesia: the importance of clinicopathological work-up in predicting risks of recurrence. Neuropediatrics 31:252–256

    Article  CAS  PubMed  Google Scholar 

  28. Perlman JM, Burns DK, Twickler DM et al (1995) Fetal hypokinesia syndrome in the monochorionic pair of a triplet pregnancy secondary to severe disruptive cerebral injury. Pediatrics 96:521–523

    CAS  PubMed  Google Scholar 

  29. Hall JG (1986) Analysis of Pena Shokeir phenotype. Am J Med Genet 25:99–117

    Article  CAS  PubMed  Google Scholar 

  30. Senocak EU, Oguz KK, Haliloglu G et al (2009) Prenatal diagnosis of Pena–Shokeir syndrome phenotype by ultrasonography and MR imaging. Pediatr Radiol 39:377–380

    Article  PubMed  Google Scholar 

  31. Santana EF, Oliveira Serni PN, Rolo LC et al (2014) Prenatal Diagnosis of Arthrogryposis as a Phenotype of Pena–Shokeir Syndrome using Two- and Three-dimensional Ultrasonography. J Clin Imaging Sci 4:20

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zaki M, Boyd PA, Impey L et al (2007) Congenital myotonic dystrophy: prenatal ultrasound findings and pregnancy outcome. Ultrasound Obstet Gynecol 29:284–288

    Article  CAS  PubMed  Google Scholar 

  33. Hall JG, Aldinger KA, Tanaka KI (2014) Amyoplasia revisited. Am J Med Genet A 164A:700–730

    Article  PubMed  Google Scholar 

  34. Farwell KD, Shahmirzadi L, El-Khechen D et al (2015) Enhanced utility of family-centered diagnostic exome sequencing with inheritance model-based analysis: results from 500 unselected families with undiagnosed genetic conditions. Genet Med 17:578–586

    Article  CAS  PubMed  Google Scholar 

  35. Alamillo CL, Powis Z, Farwell K et al. (2015) Exome sequencing positively identified relevant alterations in more than half of cases with an indication of prenatal ultrasound anomalies. Prenat Diagn 35:1073–1078

    Article  CAS  PubMed  Google Scholar 

  36. Volk A, Conboy E, Wical B et al (2015) Whole-exome sequencing in the clinic: lessons from six consecutive cases from the clinician’s perspective. Mol Syndromol 6:23–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Astrid Hellmund.

Ethics declarations

Ethical statement

This is a retrospective study of data routinely achieved and anonymously analyzed in accordance to our local ethics committee. Otherwise the manuscript does not contain clinical studies or patient data.

Conflict of interest

The authors declare that they have no conflict or interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hellmund, A., Berg, C., Geipel, A. et al. Prenatal diagnosis of fetal akinesia deformation sequence (FADS): a study of 79 consecutive cases. Arch Gynecol Obstet 294, 697–707 (2016). https://doi.org/10.1007/s00404-016-4017-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-016-4017-x

Keywords

Navigation