Skip to main content
Log in

The correlation of cumulus mucification patterns with oocyte maturation rate in vitro in FSH + LH-primed IVM cycles: a prospective study

  • Gynecologic Endocrinology and Reproductive Medicine
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

This prospective study was conducted to compare the oocyte maturation rate in vitro among four types of cumulus cell (CC) morphology, in dual gonadotropin-primed in vitro maturation (IVM) oocyte cycles.

Methods

Two-hundred and thirty cumulus-oocyte complexes (COCs) were retrieved from FSH + hCG-primed in vitro maturation cycles of 20 patients diagnosed with polycystic ovarian syndrome. The COCs that contained immature oocytes were classified into four groups according to their cumulus mucification patterns (dispersed, clumped, compacted or sparse) and their oocyte maturation rates were compared. Chi square test and Fisher’s exact test were used as appropriate.

Results

Oocytes enclosed by dispersed and clumped CCs exhibited higher maturation rates than those with compacted and sparse patterns (P < 0.001).

Conclusion

In dual gonadotropin-primed IVM cycles, oocyte maturation rates are highest in those showing dispersed and clumped CC patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adhikari D, Liu K (2014) The regulation of maturation promoting factor during prophase I arrest and meiotic entry in mammalian oocytes. Mol Cell Endocrinol 382(1):480–487. doi:10.1016/j.mce.2013.07.027

    Article  CAS  PubMed  Google Scholar 

  2. Maller J, Gautier J, Langan TA, Lohka MJ, Shenoy S, Shalloway D, Nurse P (1989) Maturation-promoting factor and the regulation of the cell cycle. J Cell Sci Suppl 12:53–63

    Article  CAS  PubMed  Google Scholar 

  3. Conti M, Hsieh M, Zamah AM, Oh JS (2012) Novel signaling mechanisms in the ovary during oocyte maturation and ovulation. Mol Cell Endocrinol 356(1–2):65–73. doi:10.1016/j.mce.2011.11.002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Gilchrist RB (2011) Recent insights into oocyte-follicle cell interactions provide opportunities for the development of new approaches to in vitro maturation. Reprod Fertil Dev 23(1):23–31. doi:10.1071/RD10225

    Article  PubMed  Google Scholar 

  5. Sela-Abramovich S, Edry I, Galiani D, Nevo N, Dekel N (2006) Disruption of gap junctional communication within the ovarian follicle induces oocyte maturation. Endocrinology 147(5):2280–2286. doi:10.1210/en.2005-1011

    Article  CAS  PubMed  Google Scholar 

  6. Richani D, Wang X, Zeng HT, Smitz J, Thompson JG, Gilchrist RB (2014) Pre-maturation with cAMP modulators in conjunction with EGF-like peptides during in vitro maturation enhances mouse oocyte developmental competence. Mol Reprod Dev 81(5):422–435. doi:10.1002/mrd.22307

    Article  CAS  PubMed  Google Scholar 

  7. Wu B, Ignotz G, Currie WB, Yang X (1997) Expression of Mos proto-oncoprotein in bovine oocytes during maturation in vitro. Biol Reprod 56(1):260–265

    Article  CAS  PubMed  Google Scholar 

  8. Teilmann SC (2005) Differential expression and localisation of connexin-37 and connexin-43 in follicles of different stages in the 4-week-old mouse ovary. Mol Cell Endocrinol 234(1–2):27–35. doi:10.1016/j.mce.2004.10.014

    Article  CAS  PubMed  Google Scholar 

  9. Feuerstein P, Cadoret V, Dalbies-Tran R, Guerif F, Bidault R, Royere D (2007) Gene expression in human cumulus cells: one approach to oocyte competence. Hum Reprod 22(12):3069–3077. doi:10.1093/humrep/dem336

    Article  CAS  PubMed  Google Scholar 

  10. Chang HM, Cheng JC, Taylor E, Leung PC (2014) Oocyte-derived BMP15 but not GDF9 down-regulates connexin43 expression and decreases gap junction intercellular communication activity in immortalized human granulosa cells. Mol Hum Reprod 20(5):373–383. doi:10.1093/molehr/gau001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Ashourzadeh S, Khalili MA, Omidi M, Mahani SN, Kalantar SM, Aflatoonian A, Habibzadeh V (2015) Noninvasive assays of in vitro matured human oocytes showed insignificant correlation with fertilization and embryo development. Arch Gynecol Obstet 292(2):459–463. doi:10.1007/s00404-015-3644-y

    Article  CAS  PubMed  Google Scholar 

  12. Liu S, Jiang JJ, Feng HL, Ma SY, Li M, Li Y (2010) Evaluation of the immature human oocytes from unstimulated cycles in polycystic ovary syndrome patients using a novel scoring system. Fertil Steril 93(7):2202–2209. doi:10.1016/j.fertnstert.2009.01.062

    Article  CAS  PubMed  Google Scholar 

  13. Smitz J, Nogueira D, Cortvrindt R (2004) Oocyte in vitro maturation. In: Gardner D, Weissman A, Howles C, Shoham Z (eds) Textbook of assisted reproductive techniques. Martin Dunitz Ltd, London, pp 107–138

    Google Scholar 

  14. Yang SH, Son WY, Yoon SH, Ko Y, Lim JH (2005) Correlation between in vitro maturation and expression of LH receptor in cumulus cells of the oocytes collected from PCOS patients in HCG-primed IVM cycles. Hum Reprod 20(8):2097–2103. doi:10.1093/humrep/dei045

    Article  CAS  PubMed  Google Scholar 

  15. McNatty KP, Heath DA, Lundy T, Fidler AE, Quirke L, O’Connell A, Smith P, Groome N, Tisdall DJ (1999) control of early follicle development. J Reprod Fertil Suppl 54:3–16

    CAS  PubMed  Google Scholar 

  16. Dal Canto M, Brambillasca F, Mignini Renzini M, Coticchio G, Merola M, Lain M, De Ponti E, Fadini R (2012) Cumulus cell-oocyte complexes retrieved from antral follicles in IVM cycles: relationship between COCs morphology, gonadotropin priming and clinical outcome. J Assist Reprod Genet 29(6):513–519. doi:10.1007/s10815-012-9766-2

    Article  PubMed Central  PubMed  Google Scholar 

  17. Choavaratana R, Thanaboonyawat I, Laokirkkiat P, Prechapanich J, Suksompong S, Mekemaharn O, Petyim S (2015) Outcomes of FSH priming and non-priming in in vitro maturation of oocytes in infertile women with PCOS: a single-blinded randomized study. Gynecol Obstet Invest 79(3):153–159. doi:10.1159/000367660

    Article  CAS  PubMed  Google Scholar 

  18. Sirard MA, Richard F, Blondin P, Robert C (2006) Contribution of the oocyte to embryo quality. Theriogenology 65(1):126–136. doi:10.1016/j.theriogenology.2005.09.020

    Article  PubMed  Google Scholar 

  19. Erickson GF, Wang C, Hsueh AJ (1979) FSH induction of functional LH receptors in granulosa cells cultured in a chemically defined medium. Nature 279(5711):336–338

    Article  CAS  PubMed  Google Scholar 

  20. Son WY, Chung JT, Chian RC, Herrero B, Demirtas E, Elizur S, Gidoni Y, Sylvestre C, Dean N, Tan SL (2008) A 38 h interval between hCG priming and oocyte retrieval increases in vivo and in vitro oocyte maturation rate in programmed IVM cycles. Hum Reprod 23(9):2010–2016

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Gilchrist RB, Ritter LJ, Armstrong DT (2004) Oocyte-somatic cell interactions during follicle development in mammals. Anim Reprod Sci 82–83:431–446. doi:10.1016/j.anireprosci.2004.05.017

    Article  PubMed  Google Scholar 

  22. Eppig JJ (1979) FSH stimulates hyaluronic acid synthesis by oocyte-cumulus cell complexes from mouse preovulatory follicles. Nature 281(5731):483–484

    Article  CAS  PubMed  Google Scholar 

  23. Chen L, Wert SE, Hendrix EM, Russell PT, Cannon M, Larsen WJ (1990) Hyaluronic acid synthesis and gap junction endocytosis are necessary for normal expansion of the cumulus mass. Mol Reprod Dev 26(3):236–247. doi:10.1002/mrd.1080260307

    Article  PubMed  Google Scholar 

  24. Lodde V, Modina S, Galbusera C, Franciosi F, Luciano AM (2007) Large-scale chromatin remodeling in germinal vesicle bovine oocytes: interplay with gap junction functionality and developmental competence. Mol Reprod Dev 74(6):740–749. doi:10.1002/mrd.20639

    Article  CAS  PubMed  Google Scholar 

  25. Lodde V, Franciosi F, Tessaro I, Modina SC, Luciano AM (2013) Role of gap junction-mediated communications in regulating large-scale chromatin configuration remodeling and embryonic developmental competence acquisition in fully grown bovine oocyte. J Assist Reprod Genet 30(9):1219–1226. doi:10.1007/s10815-013-0061-7

    Article  PubMed Central  PubMed  Google Scholar 

  26. Combelles CM, Carabatsos MJ, Kumar TR, Matzuk MM, Albertini DF (2004) Hormonal control of somatic cell oocyte interactions during ovarian follicle development. Mol Reprod Dev 69(3):347–355. doi:10.1002/mrd.20128

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ketsara Sitthirit and all the laboratory staff for their kind assistance. This research was funded by the Faculty of Medicine, Siriraj Hospital, Mahidol University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isarin Thanaboonyawat.

Ethics declarations

Conflict of interest

The authors confirm that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thanaboonyawat, I., Makemaharn, O., Petyim, S. et al. The correlation of cumulus mucification patterns with oocyte maturation rate in vitro in FSH + LH-primed IVM cycles: a prospective study. Arch Gynecol Obstet 293, 681–686 (2016). https://doi.org/10.1007/s00404-015-3935-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-015-3935-3

Keywords

Navigation