Abstract
Objective
To identify differentially expressed genes (DEGs) in endometriosis and further analyze molecular mechanisms implicated in disease pathogenesis.
Materials and methods
Gene expression data (ID: GSE7846) of human endometrial endothelial cells (HEECs) collected from eutopic endometria tissue of patients with and without endometriosis were downloaded from Gene Expression Omnibus. DEGs were screened using Limma package, followed by enrichment analysis using clusterProfiler package in R. Thereafter, protein–protein interactions (PPIs) were analyzed using STRING (Search Tool for the Retrieval of Interacting Genes) database and visualized by Cytoscape software. Meanwhile, transcription factors were screened from the DEGs based on TRANSFA database, followed by construction of regulatory network using Cytoscape.
Results
A total of 2255 up- and 408 down-regulated genes were identified in endometriosis patients as compared with control patients. Those DEGs were predominantly enriched in focal adhesion (e.g., FN1, EGF, FYN, EGFR, RAC1, CCND1 and JUN), regulation of actin cytoskeleton (e.g., FN1, EGF, EGFR, RAC1 and JUN) and MAPK signaling pathway (e.g., EGF, EGFR, RAC1, JUN, TGFB1 and MYC). Importantly, EGF, EGFR, JUN, FN1, RAC1, TGFB1, CCND1 and FYN were hub nodes in the PPI network. Additionally, TGFB1, SMAD1 and SMAD4 showed up-regulation in TGFB signaling pathway. Transcription factor MYC had a regulatory effect on the most DEGs, including TGFB1, RAC1 and CCND1.
Conclusions
Focal adhesion, regulation of actin cytoskeleton, MAPK and TGFB/SMAD signaling pathway may be important molecular mechanism underlying the pathogenesis of endometriosis.
Similar content being viewed by others
References
Cramer DW, Missmer SA (2002) The epidemiology of endometriosis. Ann N Y Acad Sci 955(1):11–22
Kobayashi H, Kajihara H, Yamada Y, Tanase Y, Kanayama S, Furukawa N, Noguchi T, Haruta S, Yoshida S, Naruse K, Sado T, Oi H (2011) Risk of carcinoma in women with ovarian endometrioma. Front Biosci 3:529–539
Vercellini P, Vigano P, Somigliana E, Fedele L (2014) Endometriosis: pathogenesis and treatment. Nat Rev Endocrinol 10(5):261–275. doi:10.1038/nrendo.2013.255
Kobayashi H, Imanaka S, Nakamura H, Tsuji A (2014) Understanding the role of epigenomic, genomic and genetic alterations in the development of endometriosis (review). Mol Med Rep 9(5):1483–1505. doi:10.3892/mmr.2014.2057
Burney RO, Talbi S, Hamilton AE, Vo KC, Nyegaard M, Nezhat CR, Lessey BA, Giudice LC (2007) Gene expression analysis of endometrium reveals progesterone resistance and candidate susceptibility genes in women with endometriosis. Endocrinology 148(8):3814–3826. doi:10.1210/en.2006-1692
Baranov VS, Ivaschenko TE, Liehr T, Yarmolinskaya MI (2014) Systems genetics view of endometriosis: a common complex disorder. Eur J Obstet Gynecol Reprod Biol 185c:59–65. doi:10.1016/j.ejogrb.2014.11.036
Khan MA, Sengupta J, Mittal S, Ghosh D (2012) Genome-wide expressions in autologous eutopic and ectopic endometrium of fertile women with endometriosis. Reprod Biol Endocrinol RB&E 10:84. doi:10.1186/1477-7827-10-84
Samartzis N, Samartzis EP, Noske A, Fedier A, Dedes KJ, Caduff R, Fink D, Imesch P (2012) Expression of the G protein-coupled estrogen receptor (GPER) in endometriosis: a tissue microarray study. Reprod Biol Endocrinol RB&E 10:30. doi:10.1186/1477-7827-10-30
Sha G, Wu D, Zhang L, Chen X, Lei M, Sun H, Lin S, Lang J (2007) Differentially expressed genes in human endometrial endothelial cells derived from eutopic endometrium of patients with endometriosis compared with those from patients without endometriosis. Human Reprod 22(12):3159–3169. doi:10.1093/humrep/dem266
Altermann E, Klaenhammer TR (2005) PathwayVoyager: pathway mapping using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. BMC Genom 6:60. doi:10.1186/1471-2164-6-60
Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, von Mering C (2013) STRING v9. 1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41(D1):D808–D815
Li C, Wong WH (2003) DNA-chip analyzer (dChip). In: The Analysis of Gene Expression Data. Springer, pp 120–141
Smyth GK (2005) Limma: linear models for microarray data. In: Bioinformatics and computational biology solutions using R and Bioconductor. Springer, pp 397–420
Yu G, Wang LG, Han Y, He QY (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16(5):284–287. doi:10.1089/omi.2011.0118
Kohl M, Wiese S, Warscheid B (2011) Cytoscape: software for visualization and analysis of biological networks. In: Data Mining in Proteomics. Springer, pp 291–303
Matys V, Fricke E, Geffers R, Gößling E, Haubrock M, Hehl R, Hornischer K, Karas D, Kel AE, Kel-Margoulis OV (2003) TRANSFAC®: transcriptional regulation, from patterns to profiles. Nucleic Acids Res 31(1):374–378
Romer LH, Birukov KG, Garcia JG (2006) Focal adhesions: paradigm for a signaling nexus. Circ Res 98(5):606–616. doi:10.1161/01.RES.0000207408.31270.db
Pagliardini L, Gentilini D, Vigano P, Panina-Bordignon P, Busacca M, Candiani M, Di Blasio AM (2013) An Italian association study and meta-analysis with previous GWAS confirm WNT4, CDKN2BAS and FN1 as the first identified susceptibility loci for endometriosis. J Med Genet 50(1):43–46. doi:10.1136/jmedgenet-2012-101257
An L, Song L, Zhang W, Lu X, Chen S, Zhao S (2014) The aspartic acid of Fyn at 390 is critical for neuronal migration during corticogenesis. Exp Cell Res 328(2):419–428. doi:10.1016/j.yexcr.2014.09.012
Teutschbein J, Schartl M, Meierjohann S (2009) Interaction of Xiphophorus and murine Fyn with focal adhesion kinase. Comp Biochem Physiol Toxicol Pharmacol CBP 149(2):168–174. doi:10.1016/j.cbpc.2008.09.013
Radulovich N, Pham NA, Strumpf D, Leung L, Xie W, Jurisica I, Tsao MS (2010) Differential roles of cyclin D1 and D3 in pancreatic ductal adenocarcinoma. Mol Cancer 9:24. doi:10.1186/1476-4598-9-24
Chikano Y, Domoto T, Furuta T, Sabit H, Kitano-Tamura A, Pyko IV, Takino T, Sai Y, Hayashi Y, Sato H, Miyamoto KI, Nakada M, Minamoto T (2014) Glycogen synthase kinase 3beta sustains invasion of glioblastoma via the focal adhesion kinase, Rac1 and c-Jun N-terminal kinase-mediated pathway. Mol Cancer Ther. doi:10.1158/1535-7163.mct-14-0479
Flamini MI, Sanchez AM, Goglia L, Tosi V, Genazzani AR, Simoncini T (2009) Differential actions of estrogen and SERMs in regulation of the actin cytoskeleton of endometrial cells. Mol Hum Reprod 15(10):675–685. doi:10.1093/molehr/gap045
Hutcheson IR, Knowlden JM, Madden TA, Barrow D, Gee JM, Wakeling AE, Nicholson RI (2003) Oestrogen receptor-mediated modulation of the EGFR/MAPK pathway in tamoxifen-resistant MCF-7 cells. Breast Cancer Res Treat 81(1):81–93. doi:10.1023/a:1025484908380
Flevaris P, Li Z, Zhang G, Zheng Y, Liu J, Du X (2009) Two distinct roles of mitogen-activated protein kinases in platelets and a novel Rac1-MAPK-dependent integrin outside-in retractile signaling pathway. Blood 113(4):893–901. doi:10.1182/blood-2008-05-155978
Schenken RS, Johnson JV, Riehl RM (1991) c-myc protooncogene polypeptide expression in endometriosis. Am J Obstet Gynecol 164 (4):1031–1036 (discussion 1036–1037)
Abe W, Nasu K, Nakada C, Kawano Y, Moriyama M, Narahara H (2013) miR-196b targets c-myc and Bcl-2 expression, inhibits proliferation and induces apoptosis in endometriotic stromal cells. Hum Reprod 28(3):750–761. doi:10.1093/humrep/des446
Yoshino O, Osuga Y, Hirota Y, Koga K, Hirata T, Harada M, Morimoto C, Yano T, Nishii O, Tsutsumi O (2004) Possible pathophysiological roles of mitogen-activated protein kinases (MAPKs) in endometriosis. Am J Reprod Immunol 52(5):306–311
Xie R, Schlumbrecht MP, Shipley GL, Xie S, Bassett RL, Broaddus RR (2009) S100A4 mediates endometrial cancer invasion and is a target of TGF-β1 signaling. Lab Invest 89(8):937–947
Luo X, Xu J, Chegini N (2003) The expression of Smads in human endometrium and regulation and induction in endometrial epithelial and stromal cells by transforming growth factor-beta. J Clin Endocrinol Metab 88(10):4967–4976. doi:10.1210/jc.2003-030276
Saito A, Osuga Y, Yoshino O, Takamura M, Hirata T, Hirota Y, Koga K, Harada M, Takemura Y, Yano T (2011) TGF-β1 induces proteinase-activated receptor 2 (PAR2) expression in endometriotic stromal cells and stimulates PAR2 activation-induced secretion of IL-6. Hum Reprod 26(7):1892–1898
Kobayashi H, Yamada Y, Morioka S, Niiro E, Shigemitsu A, Ito F (2014) Mechanism of pain generation for endometriosis-associated pelvic pain. Arch Gynecol Obstet 289(1):13–21
Zevallos HB-V, McKinnon B, Tokushige N, Mueller MD, Fraser IS, Bersinger NA (2015) Detection of the pan neuronal marker PGP9. 5 by immuno-histochemistry and quantitative PCR in eutopic endometrium from women with and without endometriosis. Arch Gynecol Obstet 291(1):85–91
Meibody FA, Kashi AM, Mirzaie AZ, Amam MGB, Behbahani AS, Zolali B, Najafi L (2011) Diagnosis of endometrial nerve fibers in women with endometriosis. Arch Gynecol Obstet 284(5):1157–1162
Anaf V, Simon P, El Nakadi I, Fayt I, Simonart T, Buxant F, Noël JC (2002) Hyperalgesia, nerve infiltration and nerve growth factor expression in deep adenomyotic nodules, peritoneal and ovarian endometriosis. Hum Reprod 17(7):1895–1900
Noël J-C, Chapron C, Fayt I, Anaf V (2008) Lymph node involvement and lymphovascular invasion in deep infiltrating rectosigmoid endometriosis. Fertil Steril 89(5):1069–1072
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
None.
Rights and permissions
About this article
Cite this article
Ping, S., Ma, C., Liu, P. et al. Molecular mechanisms underlying endometriosis pathogenesis revealed by bioinformatics analysis of microarray data. Arch Gynecol Obstet 293, 797–804 (2016). https://doi.org/10.1007/s00404-015-3875-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00404-015-3875-y