Laganà AS, Sturlese E, Retto G et al (2013) Interplay between misplaced Müllerian-derived stem cells and peritoneal immune dysregulation in the pathogenesis of endometriosis. Obstet Gynecol Int 2013:527041. doi:10.1155/2013/527041
PubMed Central
PubMed
Google Scholar
Dunselman GAJ, Vermeulen N, Becker C et al (2014) ESHRE guideline: management of women with endometriosis. Hum Reprod 29:400–412. doi:10.1093/humrep/det457
CAS
PubMed
Article
Google Scholar
Triolo O, Laganà AS, Sturlese E (2013) Chronic pelvic pain in endometriosis: an overview. J Clin Med Res 5:153–163
CAS
PubMed Central
PubMed
Google Scholar
Culley L, Law C, Hudson N et al (2013) The social and psychological impact of endometriosis on women’s lives: a critical narrative review. Hum Reprod Update 19:625–639. doi:10.1093/humupd/dmt027
PubMed
Article
Google Scholar
Rock JA (1995) The revised American Fertility Society classification of endometriosis: reproducibility of scoring. ZOLADEX Endometriosis Study Group. Fertil Steril 63:1108–1110
CAS
PubMed
Google Scholar
Haas D, Chvatal R, Habelsberger A et al (2011) Comparison of revised American Fertility Society and ENZIAN staging: a critical evaluation of classifications of endometriosis on the basis of our patient population. Fertil Steril 95:1574–1578. doi:10.1016/j.fertnstert.2011.01.135
PubMed
Article
Google Scholar
Adamson GD, Pasta DJ (2010) Endometriosis fertility index: the new, validated endometriosis staging system. Fertil Steril 94:1609–1615. doi:10.1016/j.fertnstert.2009.09.035
PubMed
Article
Google Scholar
Pizzo A, Salmeri FM, Ardita FV et al (2002) Behaviour of cytokine levels in serum and peritoneal fluid of women with endometriosis. Gynecol Obs Invest 54:82–87. doi:10.1159/000067717
CAS
Article
Google Scholar
Sturlese E, Salmeri FM, Retto G et al (2011) Dysregulation of the Fas/FasL system in mononuclear cells recovered from peritoneal fluid of women with endometriosis. J Reprod Immunol 92:74–81
CAS
PubMed
Article
Google Scholar
Hombach-Klonisch S, Pocar P, Kietz S, Klonisch T (2005) Molecular actions of polyhalogenated arylhydrocarbons (PAHs) in female reproduction. Curr Med Chem 12:599–616
CAS
PubMed
Google Scholar
Thomas Zoeller R, Brown TR, Doan LL et al (2012) Endocrine-disrupting chemicals and public health protection: a statement of principles from the endocrine society. Endocrinology 153:4097–4110. doi:10.1210/en.2012-1422
PubMed Central
PubMed
Article
CAS
Google Scholar
Vaiserman AM (2012) Epigenetics in human disease. Epigenetics Hum Dis. doi:10.1016/B978-0-12-388415-2.00027-5
Google Scholar
Hotchkiss AK, Rider CV, Blystone CR et al (2008) Fifteen years after “wingspread”—environmental endocrine disrupters and human and wildlife health: where we are today and where we need to go. Toxicol Sci 105:235–259. doi:10.1093/toxsci/kfn030
CAS
PubMed Central
PubMed
Article
Google Scholar
Birnbaum LS, Tuomisto J (2000) Non-carcinogenic effects of TCDD in animals. Food Addit Contam 17:275–288. doi:10.1080/026520300283351
CAS
PubMed
Article
Google Scholar
Anger DL, Foster WG (2008) The link between environmental toxicant exposure and endometriosis. Front Biosci 13:1578–1593. doi:10.2741/2782
CAS
PubMed
Article
Google Scholar
Rier S, Foster WG (2003) Environmental dioxins and endometriosis. Semin Reprod Med 21:145–153. doi:10.1055/s-2003-41321
CAS
PubMed
Article
Google Scholar
Bruner-Tran KL, Yeaman GR, Crispens MA et al (2008) Dioxin may promote inflammation-related development of endometriosis. Fertil Steril 89:1287–1298. doi:10.1016/j.fertnstert.2008.02.102
CAS
PubMed Central
PubMed
Article
Google Scholar
Fernández-González R, Yebra-Pimentel I, Martínez-Carballo E, Simal-Gándara J (2013) A critical review about the human exposure to polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and polychlorinated biphenyls (PCBs) through foods. Crit Rev Food Sci Nutr. doi:10.1080/10408398.2012.710279
Google Scholar
Warner M, Eskenazi B, Mocarelli P et al (2002) Serum dioxin concentrations and breast cancer risk in the Seveso Women’s Health Study. Environ Health Perspect 110:625–628. doi:10.1289/ehp.02110625
CAS
PubMed Central
PubMed
Article
Google Scholar
Schiavon M, Ragazzi M, Rada EC (2013) A proposal for a diet-based local PCDD/F deposition limit. Chemosphere 93:1639–1645. doi:10.1016/j.chemosphere.2013.08.041
CAS
PubMed
Article
Google Scholar
Schecter A, Wallace D, Pavuk M et al (2002) Dioxins in commercial United States baby food. J Toxicol Environ Health A 65:1937–1943. doi:10.1080/00984100290071450
CAS
PubMed
Article
Google Scholar
Harrad S, Wang Y, Sandaradura S, Leeds A (2003) Human dietary intake and excretion of dioxin-like compounds. J Environ Monit 5:224–228. doi:10.1039/b211406b
CAS
PubMed
Article
Google Scholar
Hamm JT, Chen CY, Birnbaum LS (2003) A mixture of dioxins, furans, and non-ortho PCBs based upon consensus toxic equivalency factors produces dioxin-like reproductive effects. Toxicol Sci 74:182–191. doi:10.1093/toxsci/kfg107
CAS
PubMed
Article
Google Scholar
Igarashi T, Osuga U, Tsutsumi O et al (1999) Expression of Ah receptor and dioxin-related genes in human uterine endometrium in women with or without endometriosis. Endocr J 46:765–772. doi:10.1507/endocrj.46.765
CAS
PubMed
Article
Google Scholar
Heilier JF, Nackers F, Verougstraete V et al (2005) Increased dioxin-like compounds in the serum of women with peritoneal endometriosis and deep endometriotic (adenomyotic) nodules. Fertil Steril 84:305–312. doi:10.1016/j.fertnstert.2005.04.001
CAS
PubMed
Article
Google Scholar
Porpora MG, Ingelido AM, di Domenico A et al (2006) Increased levels of polychlorobiphenyls in Italian women with endometriosis. Chemosphere 63:1361–1367. doi:10.1016/j.chemosphere.2005.09.022
CAS
PubMed
Article
Google Scholar
Rier SE, Martin DC, Bowman RE et al (1993) Endometriosis in rhesus monkeys (Macaca mulatta) following chronic exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Fundam Appl Toxicol 21:433–441. doi:10.1006/faat.1993.1119
CAS
PubMed
Article
Google Scholar
Rier SE, Turner WE, Martin DC et al (2001) Serum levels of TCDD and dioxin-like chemicals in rhesus monkeys chronically exposed to dioxin: correlation of increased serum PCB levels with endometriosis. Toxicol Sci 59:147–159. doi:10.1093/toxsci/59.1.147
CAS
PubMed
Article
Google Scholar
Rier SE (2002) The potential role of exposure to environmental toxicants in the pathophysiology of endometriosis. Ann N Y Acad Sci 955:201–212 (discussion 230–232, 396–406)
CAS
PubMed
Article
Google Scholar
Cummings AM, Metcalf JL, Birnbaum L (1996) Promotion of endometriosis by 2,3,7,8-tetrachlorodibenzo-p-dioxin in rats and mice: time-dose dependence and species comparison. Toxicol Appl Pharmacol 138:131–139. doi:10.1006/taap.1996.0106
CAS
PubMed
Article
Google Scholar
Johnson KL, Cummings AM, Birnbaum LS (1997) Promotion of endometriosis in mice by polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls. Environ Health Perspect 105:750–755. doi:10.1289/ehp.97105750
CAS
PubMed Central
PubMed
Article
Google Scholar
Mayani A, Barel S, Soback S, Almagor M (1997) Dioxin concentrations in women with endometriosis. Hum Reprod 12:373–375. doi:10.1093/humrep/12.2.373
CAS
PubMed
Article
Google Scholar
Pauwels A, Schepens PJ, D’Hooghe T et al (2001) The risk of endometriosis and exposure to dioxins and polychlorinated biphenyls: a case-control study of infertile women. Hum Reprod 16:2050–2055. doi:10.1093/humrep/16.10.2050
CAS
PubMed
Article
Google Scholar
Fierens S, Mairesse H, Heilier J-F et al (2007) Impact of iron and steel industry and waste incinerators on human exposure to dioxins, PCBs, and heavy metals: results of a cross-sectional study in Belgium. J Toxicol Environ Health A 70:222–226. doi:10.1080/15287390600884628
CAS
PubMed
Article
Google Scholar
Foster WG (2008) Endocrine toxicants including 2,3,7,8-terachlorodibenzo-p-dioxin (TCDD) and dioxin-like chemicals and endometriosis: is there a link? J Toxicol Environ Health B Crit Rev 11:177–187. doi:10.1080/10937400701873456
CAS
PubMed
Article
Google Scholar
Tsukino H, Hanaoka T, Sasaki H et al (2005) Associations between serum levels of selected organochlorine compounds and endometriosis in infertile Japanese women. Environ Res 99:118–125. doi:10.1016/j.envres.2005.04.003
CAS
PubMed
Article
Google Scholar
Niskar AS, Needham LL, Rubin C et al (2009) Serum dioxins, polychlorinated biphenyls, and endometriosis: a case-control study in Atlanta. Chemosphere 74:944–949. doi:10.1016/j.chemosphere.2008.10.005
CAS
PubMed
Article
Google Scholar
Tsutsumi O, Uechi H, Sone H et al (1998) Presence of dioxins in human follicular fluid: their possible stage-specific action on the development of preimplantation mouse embryos. Biochem Biophys Res Commun 250:498–501. doi:10.1006/bbrc.1998.9340
CAS
PubMed
Article
Google Scholar
LaKind JS (2007) Recent global trends and physiologic origins of dioxins and furans in human milk. J Expo Sci Environ Epidemiol 17:510–524. doi:10.1038/sj.jes.7500543
CAS
PubMed
Article
Google Scholar
Cai LY, Izumi S, Suzuki T et al (2011) Dioxins in ascites and serum of women with endometriosis: a pilot study. Hum Reprod 26:117–126. doi:10.1093/humrep/deq312
CAS
PubMed
Article
Google Scholar
Eskenazi B, Mocarelli P, Warner M et al (2002) Serum dioxin concentrations and endometriosis: a cohort study in Seveso, Italy. Environ Health Perspect 110:629–634. doi:10.1289/ehp.02110629
CAS
PubMed Central
PubMed
Article
Google Scholar
Safe S (2004) Endocrine disruptors and human health: is there a problem. Toxicology 205:3–10. doi:10.1016/j.tox.2004.06.032
CAS
PubMed
Article
Google Scholar
Case K, Clever LH, Colaianni LA et al (1997) Uniform requirements for manuscripts submitted to biomedical journals. Ann Intern Med 126:36–47. doi:10.1093/rheumatology/22.1.1-a
Article
Google Scholar
Guo SW (2006) The association of endometriosis risk and genetic polymorphisms involving dioxin detoxification enzymes: a systematic review. Eur J Obstet Gynecol Reprod Biol 124:134–143. doi:10.1016/j.ejogrb.2005.10.002
CAS
PubMed
Article
Google Scholar
Guo SW (2004) The link between exposure to dioxin and endometriosis: a critical reappraisal of primate data. Gynecol Obstet Invest 57:157–173. doi:10.1159/000076374
CAS
PubMed
Article
Google Scholar
Lim Y, Yang J, Kim Y et al (2004) Assessment of human health risk of dioxin in Korea. Env Monit Assess 92:211–228
CAS
Article
Google Scholar
De Felip E, Porpora MG, Di Domenico A et al (2004) Dioxin-like compounds and endometriosis: a study on Italian and Belgian women of reproductive age. Toxicol Lett 150:203–209. doi:10.1016/j.toxlet.2004.01.008
PubMed
Article
CAS
Google Scholar
Guo SW (2005) Glutathione S-transferases M1/T1 gene polymorphisms and endometriosis: a meta-analysis of genetic association studies. Mol Hum Reprod 11:729–743. doi:10.1093/molehr/gah206
CAS
PubMed
Article
Google Scholar
Newbold RR (2004) Lessons learned from perinatal exposure to diethylstilbestrol. Toxicol Appl Pharmacol 199:142–150. doi:10.1016/j.taap.2003.11.033
CAS
PubMed
Article
Google Scholar
Moore RW, Parsons JA, Bookstaff RC, Peterson RE (1989) Plasma concentrations of pituitary hormones in 2,3,7,8-tetrachlorodibenzo-p-dioxin-treated male rats. J Biochem Toxicol 4:165–172
CAS
PubMed
Article
Google Scholar
Li X, Johnson DC, Rozman KK (1995) Reproductive effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in female rats: ovulation, hormonal regulation, and possible mechanism(s). Toxicol Appl Pharmacol 133:321–327. doi:10.1006/taap.1995.1157
CAS
PubMed
Article
Google Scholar
Safe S, Wang F, Porter W et al (1998) Ah receptor agonists as endocrine disruptors: antiestrogenic activity and mechanisms. Toxicol Lett 102:343–347
PubMed
Article
Google Scholar
Klinge CM, Bowers JL, Kulakosky PC et al (1999) The aryl hydrocarbon receptor (AHR)/AHR nuclear translocator (ARNT) heterodimer interacts with naturally occurring estrogen response elements. Mol Cell Endocrinol 157:105–119. doi:10.1016/S0303-7207(99)00165-3
CAS
PubMed
Article
Google Scholar
Ohtake F, Takeyama K, Matsumoto T et al (2003) Modulation of oestrogen receptor signalling by association with the activated dioxin receptor. Nature 423:545–550. doi:10.1038/nature01606
CAS
PubMed
Article
Google Scholar
Poland A, Glover E, Kende AS (1976) Stereospecific, high affinity binding of 2,3,7,8 tetrachlorodibenzo p dioxin by hepatic cytosol. Evidence that the binding species is receptor for induction of aryl hydrocarbon hydroxylase. J Biol Chem 251:4936–4946
CAS
PubMed
Google Scholar
Fernandez-Salguero PM, Hilbert DM, Rudikoff S et al (1996) Aryl-hydrocarbon receptor-deficient mice are resistant to 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced toxicity. Toxicol Appl Pharmacol 140:173–179. doi:10.1006/taap.1996.0210
CAS
PubMed
Article
Google Scholar
Denis M, Cuthill S, Wikström AC et al (1988) Association of the dioxin receptor with the Mr 90,000 heat shock protein: a structural kinship with the glucocorticoid receptor. Biochem Biophys Res Commun 155:801–807. doi:10.1016/S0006-291X(88)80566-7
CAS
PubMed
Article
Google Scholar
Perdew GH (1988) Association of the Ah receptor with the 90-kDa heat shock protein. J Biol Chem 263:13802–13805. doi:10.1073/pnas.1302856110
CAS
PubMed
Google Scholar
Carver LA, Bradfield CA (1997) Ligand-dependent interaction of the aryl hydrocarbon receptor with a novel immunophilin homolog in vivo. J Biol Chem 272:11452–11456. doi:10.1074/jbc.272.17.11452
CAS
PubMed
Article
Google Scholar
Ma Q, Whitlock JP (1997) A novel cytoplasmic protein that interacts with the Ah receptor, contains tetratricopeptide repeat motifs, and augments the transcriptional response to 2,3,7,8-tetrachlorodibenzo-p-dioxin. J Biol Chem 272:8878–8884. doi:10.1074/jbc.272.14.8878
CAS
PubMed
Article
Google Scholar
Meyer BK, Pray-Grant MG, Vanden Heuvel JP, Perdew GH (1998) Hepatitis B virus X-associated protein 2 is a subunit of the unliganded aryl hydrocarbon receptor core complex and exhibits transcriptional enhancer activity. Mol Cell Biol 18:978–988
CAS
PubMed Central
PubMed
Article
Google Scholar
Pollenz RS, Sattler CA, Poland A (1994) The aryl hydrocarbon receptor and aryl hydrocarbon receptor nuclear translocator protein show distinct subcellular localizations in Hepa 1c1c7 cells by immunofluorescence microscopy. Mol Pharmacol 45:428–438
CAS
PubMed
Google Scholar
Reyes H, Reisz-Porszasz S, Hankinson O (1992) Identification of the Ah receptor nuclear translocator protein (Arnt) as a component of the DNA binding form of the Ah receptor. Science 256:1193–1195. doi:10.1126/science.256.5060.1193
CAS
PubMed
Article
Google Scholar
Denison MS, Fisher JM, Whitlock JP (1988) The DNA recognition site for the dioxin-Ah receptor complex. Nucleotide sequence and functional analysis. J Biol Chem 263:17221–17224
CAS
PubMed
Google Scholar
Bock KW (1994) Aryl hydrocarbon or dioxin receptor: biologic and toxic responses. Rev Physiol Biochem Pharmacol 125:1–42
CAS
PubMed
Google Scholar
Carlson DB, Perdew GH (2002) A dynamic role for the Ah receptor in cell signaling? Insights from a diverse group of Ah receptor interacting proteins. J Biochem Mol Toxicol 16:317–325. doi:10.1002/jbt.10051
CAS
PubMed
Article
Google Scholar
Gu YZ, Hogenesch JB, Bradfield CA (2000) The PAS superfamily: sensors of environmental and developmental signals. Annu Rev Pharmacol Toxicol 40:519–561. doi:10.1146/annurev.pharmtox.40.1.519
CAS
PubMed
Article
Google Scholar
Bock KW, Köhle C (2006) Ah receptor: dioxin-mediated toxic responses as hints to deregulated physiologic functions. Biochem Pharmacol 72:393–404. doi:10.1016/j.bcp.2006.01.017
CAS
PubMed
Article
Google Scholar
Marlowe JL, Knudsen ES, Schwemberger S, Puga A (2004) The aryl hydrocarbon receptor displaces p300 from E2F-dependent promoters and represses S phase-specific gene expression. J Biol Chem 279:29013–29022. doi:10.1074/jbc.M404315200
CAS
PubMed
Article
Google Scholar
Huang G, Elferink CJ (2005) Multiple mechanisms are involved in Ah receptor-mediated cell cycle arrest. Mol Pharmacol 67:88–96. doi:10.1124/mol.104.002410
CAS
PubMed
Article
Google Scholar
Tian Y, Ke S, Denison MS et al (1999) Ah receptor and NF-kappaB interactions, a potential mechanism for dioxin toxicity. J Biol Chem 274:510–515
CAS
PubMed
Article
Google Scholar
Pollenz RS (2002) The mechanism of AH receptor protein down-regulation (degradation) and its impact on AH receptor-mediated gene regulation. Chem Biol Interact 141:41–61. doi:10.1016/S0009-2797(02)00065-0
CAS
PubMed
Article
Google Scholar
Hankinson O (2005) Role of coactivators in transcriptional activation by the aryl hydrocarbon receptor. Arch Biochem Biophys 433:379–386
CAS
PubMed
Article
Google Scholar
Schrenk D (1998) Impact of dioxin-type induction of drug-metabolizing enzymes on the metabolism of endo- and xenobiotics. Biochem Pharmacol 55:1155–1162. doi:10.1016/S0006-2952(97)00591-1
CAS
PubMed
Article
Google Scholar
Nguyen LP, Bradfield CA (2008) The search for endogenous activators of the aryl hydrocarbon receptor. Chem Res Toxicol 21:102–116. doi:10.1021/tx7001965
CAS
PubMed Central
PubMed
Article
Google Scholar
Endler A, Chen L, Shibasaki F (2014) Coactivator recruitment of AhR/ARNT1. Int J Mol Sci 15:11100–11110. doi:10.3390/ijms150611100
CAS
PubMed Central
PubMed
Article
Google Scholar
Teske S, Bohn AA, Regal JF et al (2005) Activation of the aryl hydrocarbon receptor increases pulmonary neutrophilia and diminishes host resistance to influenza A virus. Am J Physiol Lung Cell Mol Physiol 289:L111–L124. doi:10.1152/ajplung.00318.2004
CAS
PubMed
Article
Google Scholar
Tibbetts TA, Conneely OM, O’Malley BW (1999) Progesterone via its receptor antagonizes the pro-inflammatory activity of estrogen in the mouse uterus. Biol Reprod 60:1158–1165. doi:10.1095/biolreprod60.5.1158
CAS
PubMed
Article
Google Scholar
Majewski AC, Hansen PJ (2002) Progesterone inhibits rejection of xenogeneic transplants in the sheep uterus. Horm Res 58:128–135. doi:10.1159/000063578
CAS
PubMed
Article
Google Scholar
Mendelson CR, Hardy DB (2006) Role of the progesterone receptor (PR) in the regulation of inflammatory response pathways and aromatase in the breast. J Steroid Biochem Mol Biol 102:241–249. doi:10.1016/j.jsbmb.2006.09.029
CAS
PubMed Central
PubMed
Article
Google Scholar
Gleicher N, el-Roeiy A, Confino E, Friberg J (1987) Is endometriosis an autoimmune disease? Obstet Gynecol 70:115–122. doi:10.1016/0020-7292(88)90292-5
CAS
PubMed
Google Scholar
Rier SE, Yeaman GR (1997) Immune aspects of endometriosis: relevance of the uterine mucosal immune system. Semin Reprod Endocrinol 15:209–220. doi:10.1055/s-2008-1068750
CAS
PubMed
Article
Google Scholar
Braun DP, Dmowski WP (1998) Endometriosis: abnormal endometrium and dysfunctional immune response. Curr Opin Obstet Gynecol 10:365–369. doi:10.1097/00001703-199810000-00003
CAS
PubMed
Article
Google Scholar
Iborra A, Palacio JR, Ulcova-Gallova Z, Martínez P (2000) Autoimmune response in women with endometriosis. Am J Reprod Immunol 44:236–241
CAS
PubMed
Article
Google Scholar
Bruner-Tran KL, Eisenberg E, Yeaman GR et al (2002) Steroid and cytokine regulation of matrix metalloproteinase expression in endometriosis and the establishment of experimental endometriosis in nude mice. J Clin Endocrinol Metab 87:4782–4791. doi:10.1210/jc.2002-020418
CAS
PubMed
Article
Google Scholar
Maeda N, Izumiya C, Oguri H et al (2002) Aberrant expression of intercellular adhesion molecule-1 and killer inhibitory receptors induces immune tolerance in women with pelvic endometriosis. Fertil Steril 77:679–683. doi:10.1016/S0015-0282(01)03249-6
PubMed
Article
Google Scholar
Sidell N, Han SW, Parthasarathy S (2002) Regulation and modulation of abnormal immune responses in endometriosis. Ann N Y Acad Sci 955:159–173 (discussion 199–200, 396–406)
CAS
PubMed
Article
Google Scholar
Yeaman GR, Collins JE, Lang GA (2002) Autoantibody responses to carbohydrate epitopes in endometriosis. Ann N Y Acad Sci 955:174–182 (discussion 199–200, 396–406)
CAS
PubMed
Article
Google Scholar
Matarese G, De Placido G, Nikas Y, Alviggi C (2003) Pathogenesis of endometriosis: natural immunity dysfunction or autoimmune disease? Trends Mol Med 9:223–228. doi:10.1016/S1471-4914(03)00051-0
CAS
PubMed
Article
Google Scholar
Takemoto K, Nakajima M, Fujiki Y et al (2004) Role of the aryl hydrocarbon receptor and Cyp1b1 in the antiestrogenic activity of 2,3,7,8-tetrachlorodibenzo-p-dioxin. Arch Toxicol 78:309–315. doi:10.1007/s00204-004-0550-7
CAS
PubMed
Article
Google Scholar
Safe S, Krishnan V (1995) Chlorinated hydrocarbons: estrogens and antiestrogens. Toxicol Lett 82:731–736
PubMed
Article
Google Scholar
Astroff B, Rowlands C, Dickerson R, Safe S (1990) 2,3,7,8-Tetrachlorodibenzo-p-dioxin inhibition of 17 beta-estradiol-induced increases in rat uterine epidermal growth factor receptor binding activity and gene expression. Mol Cell Endocrinol 72:247–252
CAS
PubMed
Article
Google Scholar
Boverhof DR, Burgoon LD, Williams KJ, Zacharewski TR (2008) Inhibition of estrogen-mediated uterine gene expression responses by dioxin. Mol Pharmacol 73:82–93. doi:10.1124/mol.107.040451
CAS
PubMed
Article
Google Scholar
Brauze D, Crow JS, Malejka-Giganti D (1997) Modulation by beta-naphthoflavone of ovarian hormone dependent responses in rat uterus and liver in vivo. Can J Physiol Pharmacol 75:1022–1029
CAS
PubMed
Article
Google Scholar
Boverhof DR, Kwekel JC, Humes DG et al (2006) Dioxin induces an estrogen-like, estrogen receptor-dependent gene expression response in the murine uterus. Mol Pharmacol 69:1599–1606. doi:10.1124/mol.105.019638
CAS
PubMed
Article
Google Scholar
Hernandez-Ochoa I, Barnett-Ringgold KR, Dehlinger SL et al (2010) The ability of the aryl hydrocarbon receptor to regulate ovarian follicle growth and estradiol biosynthesis in mice depends on stage of sexual maturity. Biol Reprod 83:698–706. doi:10.1095/biolreprod.110.087015
CAS
PubMed Central
PubMed
Article
Google Scholar
Lin TM, Rasmussen NT, Moore RW et al (2003) Region-specific inhibition of prostatic epithelial bud formation in the urogenital sinus of C57BL/6 mice exposed in utero to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Sci 76:171–181. doi:10.1093/toxsci/kfg218
CAS
PubMed
Article
Google Scholar
Ohtake F, Fujii-Kuriyama Y, Kawajiri K, Kato S (2011) Cross-talk of dioxin and estrogen receptor signals through the ubiquitin system. J Steroid Biochem Mol Biol 127:102–107. doi:10.1016/j.jsbmb.2011.03.007
CAS
PubMed
Article
Google Scholar
Lee AJ, Cai MX, Thomas PE et al (2003) Characterization of the oxidative metabolites of 17β-estradiol and estrone formed by 15 selectively expressed human cytochrome P450 isoforms. Endocrinology 144:3382–3398. doi:10.1210/en.2003-0192
CAS
PubMed
Article
Google Scholar
Swedenborg E, Pongratz I (2010) AhR and ARNT modulate ER signaling. Toxicology 268:132–138. doi:10.1016/j.tox.2009.09.007
CAS
PubMed
Article
Google Scholar
Ohtake F, Baba A, Takada I et al (2007) Dioxin receptor is a ligand-dependent E3 ubiquitin ligase. Nature 446:562–566. doi:10.1038/nature05683
CAS
PubMed
Article
Google Scholar
Meyer ME, Gronemeyer H, Turcotte B et al (1989) Steroid hormone receptors compete for factors that mediate their enhancer function. Cell 57:433–442. doi:10.1016/0092-8674(89)90918-5
CAS
PubMed
Article
Google Scholar
Buchanan DL, Setiawan T, Lubahn DB et al (1999) Tissue compartment-specific estrogen receptor-α participation in the mouse uterine epithelial secretory response. Endocrinology 140:484–491. doi:10.1210/en.140.1.484
CAS
PubMed
Google Scholar
Bulun SE (2000) Aromatase deficiency and estrogen resistance: from molecular genetics to clinic. Semin Reprod Med 18:31–39. doi:10.1055/s-2000-13481
CAS
PubMed
Article
Google Scholar
Fazleabas AT, Brudney A, Chai D et al (2003) Steroid receptor and aromatase expression in baboon endometriotic lesions. Fertil Steril 80:820–827. doi:10.1016/S0015-0282(03)00982-8
PubMed
Article
Google Scholar
Bulun SE (2009) Endometriosis. N Engl J Med 360:268–279. doi:10.1056/NEJMra0804690
CAS
PubMed
Article
Google Scholar
Agarwal VR, Bulun SE, Leitch M et al (1996) Use of alternative promoters to express the aromatase cytochrome P450 (CYP19) gene in breast adipose tissues of cancer-free and breast cancer patients. J Clin Endocrinol Metab 81:3843–3849. doi:10.1210/jc.81.11.3843
CAS
PubMed
Google Scholar
Agarwal VR, Ashanullah CI, Simpson ER, Bulun SE (1997) Alternatively spliced transcripts of the aromatase cytochrome P450 (CYP19) gene in adipose tissue of women. J Clin Endocrinol Metab 82:70–74. doi:10.1210/jc.82.1.70
CAS
PubMed
Google Scholar
Attar E, Bulun SE (2006) Aromatase and other steroidogenic genes in endometriosis: translational aspects. Hum Reprod Update 12:49–56. doi:10.1093/humupd/dmi034
CAS
PubMed
Article
Google Scholar
Bulun SE, Mahendroo MS, Simpson ER (1994) Aromatase gene expression in adipose tissue: relationship to breast cancer. J Steroid Biochem Mol Biol 49:319–326. doi:10.1016/0960-0760(94)90274-7
CAS
PubMed
Article
Google Scholar
Simpson ER, Zhao Y, Agarwal VR et al (1997) Aromatase expression in health and disease. Recent Prog Horm Res 52:185–213 (discussion 213–214)
CAS
PubMed
Google Scholar
Fang Z, Yang S, Gurates B et al (2002) Genetic or enzymatic disruption of aromatase inhibits the growth of ectopic uterine tissue. J Clin Endocrinol Metab 87:3460–3466. doi:10.1210/jc.87.7.3460
CAS
PubMed
Article
Google Scholar
Bulun SE, Imir G, Utsunomiya H et al (2005) Aromatase in endometriosis and uterine leiomyomata. J Steroid Biochem Mol Biol 95:57–62
CAS
PubMed
Article
Google Scholar
Langoi D, Pavone ME, Gurates B et al (2013) Aromatase inhibitor treatment limits progression of peritoneal endometriosis in baboons. Fertil Steril. doi:10.1016/j.fertnstert.2012.11.021
PubMed Central
PubMed
Google Scholar
Fischle W, Wang Y, Allis CD (2003) Histone and chromatin cross-talk. Curr Opin Cell Biol 15:172–183. doi:10.1016/S0955-0674(03)00013-9
CAS
PubMed
Article
Google Scholar
Fujii-Kuriyama Y, Mimura J (2003) Transcriptional roles of AhR in expression of biological effects induced by endocrine disruptors. Pure Appl Chem 75:1819–1826. doi:10.1351/pac200375111819
CAS
Article
Google Scholar
Baba T, Mimura J, Nakamura N et al (2005) Intrinsic function of the aryl hydrocarbon (dioxin) receptor as a key factor in female reproduction. Mol Cell Biol 25:10040–10051. doi:10.1128/MCB.25.22.10040-10051.2005
CAS
PubMed Central
PubMed
Article
Google Scholar
Matthews J, Wihlén B, Thomsen J, Gustafsson J-A (2005) Aryl hydrocarbon receptor-mediated transcription: ligand-dependent recruitment of estrogen receptor alpha to 2,3,7,8-tetrachlorodibenzo-p-dioxin-responsive promoters. Mol Cell Biol 25:5317–5328. doi:10.1128/MCB.25.13.5317-5328.2005
CAS
PubMed Central
PubMed
Article
Google Scholar
Ahmed S, Valen E, Sandelin A, Matthews J (2009) Dioxin increases the interaction between aryl hydrocarbon receptor and estrogen receptor alpha at human promoters. Toxicol Sci 111:254–266. doi:10.1093/toxsci/kfp144
CAS
PubMed Central
PubMed
Article
Google Scholar
Beischlag TV, Perdew GH (2005) ER alpha-AHR-ARNT protein-protein interactions mediate estradiol-dependent transrepression of dioxin-inducible gene transcription. J Biol Chem 280:21607–21611. doi:10.1074/jbc.C500090200
CAS
PubMed
Article
Google Scholar
Nayyar T, Bruner-Tran KL, Piestrzeniewicz-Ulanska D, Osteen KG (2007) Developmental exposure of mice to TCDD elicits a similar uterine phenotype in adult animals as observed in women with endometriosis. Reprod Toxicol 23:326–336. doi:10.1016/j.reprotox.2006.09.007
CAS
PubMed Central
PubMed
Article
Google Scholar
Igarashi TM, Bruner-Tran KL, Yeaman GR et al (2005) Reduced expression of progesterone receptor-B in the endometrium of women with endometriosis and in cocultures of endometrial cells exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Fertil Steril 84:67–74. doi:10.1016/j.fertnstert.2005.01.113
CAS
PubMed
Article
Google Scholar
Herington JL, Bruner-Tran KL, Lucas JA, Osteen KG (2011) Immune interactions in endometriosis. Expert Rev Clin Immunol 7:611–626. doi:10.1586/eci.11.53
PubMed Central
PubMed
Article
Google Scholar
Poellinger L (2000) Mechanistic aspects—the dioxin (aryl hydrocarbon) receptor. Food Addit Contam 17:261–266. doi:10.1080/026520300283333
CAS
PubMed
Article
Google Scholar
Laupeze B, Amiot L, Sparfel L et al (2002) Polycyclic aromatic hydrocarbons affect functional differentiation and maturation of human monocyte-derived dendritic cells. J Immunol 168:2652–2658
CAS
PubMed
Article
Google Scholar
Van Grevenynghe J, Rion S, Le Ferrec E et al (2003) Polycyclic aromatic hydrocarbons inhibit differentiation of human monocytes into macrophages. J Immunol 170:2374–2381
PubMed
Article
Google Scholar
Yang JH (1999) Expression of dioxin-responsive genes in human endometrial cells in culture. Biochem Biophys Res Commun 257:259–263. doi:10.1006/bbrc.1999.0451
CAS
PubMed
Article
Google Scholar
González-Ramos R, Donnez J, Defrère S et al (2007) Nuclear factor-kappa B is constitutively activated in peritoneal endometriosis. Mol Hum Reprod 13:503–509. doi:10.1093/molehr/gam033
PubMed
Article
CAS
Google Scholar
Buck Louis GM, Weiner JM, Whitcomb BW et al (2005) Environmental PCB exposure and risk of endometriosis. Hum Reprod 20:279–285. doi:10.1093/humrep/deh575
CAS
Article
Google Scholar
Abrahams VM, Collins JE, Wira CR et al (2003) Inhibition of human polymorphonuclear cell oxidative burst by 17-beta-estradiol and 2,3,7,8-tetrachlorodibenzo-p-dioxin. Am J Reprod Immunol 50:463–472
PubMed
Article
Google Scholar
Cao W-G, Morin M, Metz C et al (2005) Stimulation of macrophage migration inhibitory factor expression in endometrial stromal cells by interleukin 1, beta involving the nuclear transcription factor NFkappaB. Biol Reprod 73:565–570. doi:10.1095/biolreprod.104.038331
CAS
PubMed
Article
Google Scholar
Schweppe KW, Wynn RM (1981) Ultrastructural changes in endometriotic implants during the menstrual cycle. Obstet Gynecol 58:465–473
CAS
PubMed
Google Scholar
Bruner-Tran KL, Rier SE, Eisenberg E, Osteen KG (1999) The potential role of environmental toxins in the pathophysiology of endometriosis. Gynecol Obstet Invest 48(Suppl 1):45–56. doi:10.1159/000052868
CAS
PubMed
Article
Google Scholar
Ruby CE, Leid M, Kerkvliet NI (2002) 2,3,7,8-Tetrachlorodibenzo-p-dioxin suppresses tumor necrosis factor a and anti-CD40-induced activation of NF-kappaB/Rel in dendritic cells : p50 homodimer activation is not affected. Mol Pharmacol 62:722–728
CAS
PubMed
Article
Google Scholar
Thatcher TH, Maggirwar SB, Baglole CJ et al (2007) Aryl hydrocarbon receptor-deficient mice develop heightened inflammatory responses to cigarette smoke and endotoxin associated with rapid loss of the nuclear factor-kappaB component RelB. Am J Pathol 170:855–864. doi:10.2353/ajpath.2007.060391
CAS
PubMed Central
PubMed
Article
Google Scholar
Baldi L, Brown K, Franzoso G, Siebenlist U (1996) Critical role for lysines 21 and 22 in signal-induced, ubiquitin-mediated proteolysis of I kappa B-alpha. J Biol Chem 271:376–379. doi:10.1074/jbc.271.1.376
CAS
PubMed
Article
Google Scholar
Roff M, Thompson J, Rodriguez MS et al (1996) Role of IkappaBalpha ubiquitination in signal-induced activation of NFkappaB in vivo. J Biol Chem 271:7844–7850. doi:10.1074/jbc.271.13.7844
CAS
PubMed
Article
Google Scholar
Laird SM, Tuckerman EM, Dalton CF et al (1997) The production of leukaemia inhibitory factor by human endometrium: presence in uterine flushings and production by cells in culture. Hum Reprod 12:569–574
CAS
PubMed
Article
Google Scholar
Laird SM, Tuckerman EM, Cork BA, Li TC (2000) Expression of nuclear factor kappa B in human endometrium; role in the control of interleukin 6 and leukaemia inhibitory factor production. Mol Hum Reprod 6:34–40
CAS
PubMed
Article
Google Scholar
Camacho IA, Hassuneh MR, Nagarkatti M, Nagarkatti PS (2001) Enhanced activation-induced cell death as a mechanism of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced immunotoxicity in peripheral T cells. Toxicology 165:51–63. doi:10.1016/S0300-483X(01)00391-2
CAS
PubMed
Article
Google Scholar
Guo SW (2007) Nuclear factor-kappaB (NF-kappaB): an unsuspected major culprit in the pathogenesis of endometriosis that is still at large? Gynecol Obstet Invest 63:71–97. doi:10.1159/000096047
CAS
PubMed
Article
Google Scholar
Neumann M, Naumann M (2007) Beyond IkappaBs: alternative regulation of NF-kappaB activity. FASEB J 21:2642–2654. doi:10.1096/fj.06-7615rev
CAS
PubMed
Article
Google Scholar
Wieser F, Vigne JL, Ryan I et al (2005) Sulindac suppresses nuclear factor-κB activation and RANTES gene and protein expression in endometrial stromal cells from women with endometriosis. J Clin Endocrinol Metab 90:6441–6447. doi:10.1210/jc.2005-0972
CAS
PubMed
Article
Google Scholar
Calicchio R, Doridot L, Miralles F et al (2014) DNA methylation, an epigenetic mode of gene expression regulation in reproductive science. Curr Pharm Des 20:1726–1750. doi:10.2174/13816128113199990517
CAS
PubMed
Article
Google Scholar
Naqvi H, Ilagan Y, Krikun G, Taylor HS (2014) Altered genome-wide methylation in endometriosis. Reprod Sci. doi:10.1177/1933719114532841
PubMed
Google Scholar
Wu Y, Halverson G, Basir Z et al (2005) Aberrant methylation at HOXA10 may be responsible for its aberrant expression in the endometrium of patients with endometriosis. Am J Obstet Gynecol 193:371–380. doi:10.1016/j.ajog.2005.01.034
CAS
PubMed
Article
Google Scholar
Holliday R (2006) Epigenetics: a historical overview. Epigenetics 1:76–80. doi:10.4161/epi.1.2.2762
PubMed
Article
Google Scholar
Nasu K, Kawano Y, Tsukamoto Y et al (2011) Aberrant DNA methylation status of endometriosis: epigenetics as the pathogenesis, biomarker and therapeutic target. J Obstet Gynaecol Res 37:683–695. doi:10.1111/j.1447-0756.2011.01663.x
CAS
PubMed
Article
Google Scholar
Czyz W, Morahan JM, Ebers GC, Ramagopalan SV (2012) Genetic, environmental and stochastic factors in monozygotic twin discordance with a focus on epigenetic differences. BMC Med 10:93. doi:10.1186/1741-7015-10-93
PubMed Central
PubMed
Article
Google Scholar
Cortessis VK, Thomas DC, Joan Levine A et al (2012) Environmental epigenetics: prospects for studying epigenetic mediation of exposure-response relationships. Hum Genet 131:1565–1589. doi:10.1007/s00439-012-1189-8
CAS
PubMed Central
PubMed
Article
Google Scholar
Guo SW (2009) Epigenetics of endometriosis. Mol Hum Reprod 15:587–607. doi:10.1093/molehr/gap064
CAS
PubMed
Article
Google Scholar
Wu Y, Shi X, Guo SW (2008) The knockdown of progesterone receptor isoform B (PR-B) promotes proliferation in immortalized endometrial stromal cells. Fertil Steril 90:1320–1323. doi:10.1016/j.fertnstert.2007.10.049
CAS
PubMed
Article
Google Scholar
Laird PW, Jaenisch R (1996) The role of DNA methylation in cancer genetic and epigenetics. Annu Rev Genet 30:441–464. doi:10.1146/annurev.genet.30.1.441
CAS
PubMed
Article
Google Scholar
Lister R, Pelizzola M, Dowen RH et al (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462:315–322. doi:10.1038/nature08514
CAS
PubMed Central
PubMed
Article
Google Scholar
Huck-Hui N, Bird A (1999) DNA methylation and chromatin modification. Curr Opin Genet Dev 9:158–163. doi:10.1016/S0959-437X(99)80024-0
Article
Google Scholar
Borghese B, Barbaux S, Mondon F et al (2010) Research resource: genome-wide profiling of methylated promoters in endometriosis reveals a subtelomeric location of hypermethylation. Mol Endocrinol 24:1872–1885. doi:10.1210/me.2010-0160
CAS
PubMed
Article
Google Scholar
Izawa M, Taniguchi F, Terakawa N, Harada T (2013) Epigenetic aberration of gene expression in endometriosis. Front Biosci (Elite Ed) 5:900–910
Article
Google Scholar
Fraga MF, Ballestar E, Paz MF et al (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 102:10604–10609. doi:10.1073/pnas.0500398102
CAS
PubMed Central
PubMed
Article
Google Scholar
Taylor HS, Bagot C, Kardana A et al (1999) HOX gene expression is altered in the endometrium of women with endometriosis. Hum Reprod 14:1328–1331. doi:10.1093/humrep/14.5.1328
CAS
PubMed
Article
Google Scholar
Meyer JL, Zimbardi D, Podgaec S et al (2014) DNA methylation patterns of steroid receptor genes ESR1, ESR2 and PGR in deep endometriosis compromising the rectum. Int J Mol Med 33:897–904. doi:10.3892/ijmm.2014.1637
CAS
PubMed
Google Scholar
Guo SW (2012) The endometrial epigenome and its response to steroid hormones. Mol Cell Endocrinol 358:185–196. doi:10.1016/j.mce.2011.10.025
CAS
PubMed
Article
Google Scholar
Ito T, Bulger M, Pazin MJ et al (1997) ACF, an ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor. Cell 90:145–155. doi:10.1016/S0092-8674(00)80321-9
CAS
PubMed
Article
Google Scholar
Takai N, Narahara H (2007) Human endometrial and ovarian cancer cells: histone deacetylase inhibitors exhibit antiproliferative activity, potently induce cell cycle arrest, and stimulate apoptosis. Curr Med Chem 14:2548–2553. doi:10.2174/092986707782023299
CAS
PubMed
Article
Google Scholar
Nasu K, Kawano Y, Kai K et al (2014) Aberrant histone modification in endometriosis. Front Biosci Landmark Ed 19:1202–1214. doi:10.2741/4276
PubMed
Article
Google Scholar
Kawano Y, Nasu K, Li H et al (2011) Application of the histone deacetylase inhibitors for the treatment of endometriosis: histone modifications as pathogenesis and novel therapeutic target. Hum Reprod 26:2486–2498. doi:10.1093/humrep/der203
CAS
PubMed
Article
Google Scholar
Duenas-Gonzalez A, Candelaria M, Perez-Plascencia C et al (2008) Valproic acid as epigenetic cancer drug: preclinical, clinical and transcriptional effects on solid tumors. Cancer Treat Rev 34:206–222. doi:10.1016/j.ctrv.2007.11.003
CAS
PubMed
Article
Google Scholar
Mann BS, Johnson JR, He K et al (2007) Vorinostat for treatment of cutaneous manifestations of advanced primary cutaneous T-cell lymphoma. Clin Cancer Res 13:2318–2322
CAS
PubMed
Article
Google Scholar
Gerstner T, Bell N, König S (2008) Oral valproic acid for epilepsy—long-term experience in therapy and side effects. Expert Opin Pharmacother 9:285–292. doi:10.1517/14656566.9.2.285
CAS
PubMed
Article
Google Scholar
Monteiro JB, Colón-Díaz M, García M et al (2014) Endometriosis is characterized by a distinct pattern of histone 3 and histone 4 lysine modifications. Reprod Sci 21:305–318. doi:10.1177/1933719113497267
PubMed Central
PubMed
Article
CAS
Google Scholar
Laudanski P, Charkiewicz R, Kuzmicki M et al (2013) MicroRNAs expression profiling of eutopic proliferative endometrium in women with ovarian endometriosis. Reprod Biol Endocrinol 11:78. doi:10.1186/1477-7827-11-78
PubMed Central
PubMed
Article
CAS
Google Scholar
Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297. doi:10.1016/S0092-8674(04)00045-5
CAS
PubMed
Article
Google Scholar
Ibrahim SA, Hassan H, Götte M (2014) MicroRNA-dependent targeting of the extracellular matrix as a mechanism of regulating cell behavior. Biochim Biophys Acta 1840:2609–2620. doi:10.1016/j.bbagen.2014.01.022
CAS
PubMed
Article
Google Scholar
Guida M, Marra ML, Marra M et al (2013) Association between exposure to dioxin-like polychlorinated biphenyls and miR-191 expression in human peripheral blood mononuclear cells. Mutat Res 753:36–41. doi:10.1016/j.mrgentox.2012.12.018
CAS
PubMed
Article
Google Scholar
Singh NP, Singh UP, Guan H et al (2012) Prenatal exposure to TCDD triggers significant modulation of microrna expression profile in the thymus that affects consequent gene expression. PLoS One. doi:10.1371/journal.pone.0045054
Google Scholar
Ohlsson Teague EMC, Van der Hoek KH, Van der Hoek MB et al (2009) MicroRNA-regulated pathways associated with endometriosis. Mol Endocrinol 23:265–275. doi:10.1210/me.2008-0387
PubMed
Article
CAS
Google Scholar
Hawkins SM, Creighton CJ, Han DY et al (2011) Functional microRNA involved in endometriosis. Mol Endocrinol 25:821–832. doi:10.1210/me.2010-0371
CAS
PubMed Central
PubMed
Article
Google Scholar
Burney RO, Talbi S, Hamilton AE et al (2007) Gene expression analysis of endometrium reveals progesterone resistance and candidate susceptibility genes in women with endometriosis. Endocrinology 148:3814–3826. doi:10.1210/en.2006-1692
CAS
PubMed
Article
Google Scholar
Burney RO, Hamilton AE, Aghajanova L et al (2009) MicroRNA expression profiling of eutopic secretory endometrium in women with versus without endometriosis. Mol Hum Reprod 15:625–631. doi:10.1093/molehr/gap068
CAS
PubMed Central
PubMed
Article
Google Scholar
Adammek M, Greve B, Kässens N et al (2013) MicroRNA miR-145 inhibits proliferation, invasiveness, and stem cell phenotype of an in vitro endometriosis model by targeting multiple cytoskeletal elements and pluripotency factors. Fertil Steril. doi:10.1016/j.fertnstert.2012.11.055
PubMed
Google Scholar
Shi XY, Gu L, Chen J et al (2014) Downregulation of miR-183 inhibits apoptosis and enhances the invasive potential of endometrial stromal cells in endometriosis. Int J Mol Med 33:59–67. doi:10.3892/ijmm.2013.1536
CAS
PubMed Central
PubMed
Google Scholar
Baltimore D, Boldin MP, O’Connell RM et al (2008) MicroRNAs: new regulators of immune cell development and function. Nat Immunol 9:839–845. doi:10.1038/ni.f.209
CAS
PubMed
Article
Google Scholar
Bi Y, Liu G, Yang R (2009) MicroRNAs: novel regulators during the immune response. J Cell Physiol 218:467–472. doi:10.1002/jcp.21639
CAS
PubMed
Article
Google Scholar
Petracco RG, Kong A, Grechukhina O et al (2012) Global gene expression profiling of proliferative phase endometrium reveals distinct functional subdivisions. Reprod Sci 19:1138–1145. doi:10.1177/1933719112443877
CAS
PubMed Central
PubMed
Article
Google Scholar
Munro SK, Farquhar CM, Mitchell MD, Ponnampalam AP (2010) Epigenetic regulation of endometrium during the menstrual cycle. Mol Hum Reprod 16:297–310. doi:10.1093/molehr/gaq010
CAS
PubMed
Article
Google Scholar
Kobayashi H, Iwai K, Niiro E et al (2014) Fetal programming theory: implication for the understanding of endometriosis. Hum Immunol 75:208–217. doi:10.1016/j.humimm.2013.12.012
CAS
PubMed
Article
Google Scholar
Wolf M, Klug J, Hackenberg R et al (1992) Human CC10, the homologue of rabbit uteroglobin: genomic cloning, chromosomal localization and expression in endometrial cell lines. Hum Mol Genet 1:371–378
CAS
PubMed
Article
Google Scholar
Bruner-Tran KL, Ding T, Osteen KG (2010) Dioxin and endometrial progesterone resistance. Semin Reprod Med 28:59–68. doi:10.1055/s-0029-1242995
CAS
PubMed Central
PubMed
Article
Google Scholar
Giudice LC, Evers JLH, Healy DL (2012) Endometriosis: science and practice. Endometr Sci Pract. doi:10.1002/9781444398519
Google Scholar
Osteen KG, Bruner-Tran KL, Eisenberg E (2005) Reduced progesterone action during endometrial maturation: a potential risk factor for the development of endometriosis. Fertil Steril 83:529–537. doi:10.1016/j.fertnstert.2004.11.026
CAS
PubMed
Article
Google Scholar