Skip to main content
Log in

DACT1 is involved in human placenta development by promoting Wnt signaling

  • General Gynecology
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Objective

The aim of this study was to evaluate the expression of DACT1 in human placenta tissue and the relationship between DACT1 and target genes of the Wnt signaling pathway.

Method

Real-time PCR and western blotting were used to detect the expression of DACT1 and the target genes of Wnt signaling pathway in human placenta tissue. And the relationship between them was analyzed using SPSS 19.

Results

Real-time PCR results showed that DACT1 expression was significantly higher in 49- to 71-day placenta tissues (mean value = 0.020) than that in 39- to 48-day (the mean value = 0.009). The mRNA expressions of the Wnt signaling pathway target genes, CCND1, CCND2, FOSL1, DAB2 and JUN, were also increased expressed in human placenta tissues. Significant positive associations between DACT1 and CCND1, CCND2, FOSL1, DAB2 and JUN were observed. Western blotting analysis showed that the protein expression of DACT1, CCND1, CCND2, FOSL1, DAB2 and JUN displayed the increasing trend in 43-, 49- and 71-day placenta samples.

Conclusion

DACT1 might play an important role in human placenta development via promoting Wnt signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cheyette BN, Waxman JS, Miller JR, Takemaru K, Sheldahl LC, Khlebtsova N, Fox EP, Earnest T, Moon RT (2002) Dapper, a dishevelled-associated antagonist of beta-catenin and JNK signaling, is required for notochord formation. Dev Cell 2:449–461

    Article  CAS  PubMed  Google Scholar 

  2. Fisher DA, Kivimae S, Hoshino J, Suriben R, Martin PM, Baxter N, Cheyette BN (2006) Three Dact gene family members are expressed during embryonic development and in the adult brains of mice. Dev Dyn 235:2620–2630

    Article  CAS  PubMed  Google Scholar 

  3. Gloy J, Hikasa H, Sokol SY (2002) Frodo interacts with dishevelled to transduce Wnt signals. Nat Cell Biol 4:351–357

    CAS  PubMed  Google Scholar 

  4. Hikasa H, Sokol SY (2004) The involvement of Frodo in TCF-dependent signaling and neural tissue development. Development 131:4725–4734

    Article  CAS  PubMed  Google Scholar 

  5. Wodarz A, Nusse R (1998) Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol 14:59–88

    Article  CAS  PubMed  Google Scholar 

  6. Wang J, Sinha T, Wynshaw-Boris A (2012) Wnt signaling in mammalian development: lessons from mouse genetics. Cold Spring Harb Perspect Biol 4:a007963

    Article  PubMed Central  PubMed  Google Scholar 

  7. Gillhouse M, Wagner Nyholm M, Hikasa H, Sokol SY, Grinblat Y (2004) Two Frodo/Dapper homologs are expressed in the developing brain and mesoderm of zebrafish. Dev Dyn 230:403–409

    Article  CAS  PubMed  Google Scholar 

  8. Katoh M, Katoh M (2003) Identification and characterization of human DAPPER1 and DAPPER2 genes in silico. Int J Oncol 22:907–913

    CAS  PubMed  Google Scholar 

  9. Waxman JS, Hocking AM, Stoick CL, Moon RT (2004) Zebrafish Dapper1 and Dapper2 play distinct roles in Wnt-mediated developmental processes. Development 131:5909–5921

    Article  CAS  PubMed  Google Scholar 

  10. Zhang L, Gao X, Wen J, Ning Y, Chen YG (2006) Dapper 1 antagonizes Wnt signaling by promoting dishevelled degradation. J Biol Chem 281:8607–8612

    Article  CAS  PubMed  Google Scholar 

  11. Coan PM, Ferguson-Smith AC, Burton GJ (2005) Ultrastructural changes in the interhaemal membrane and junctional zone of the murine chorioallantoic placenta across gestation. J Anat 207:783–796

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Cross JC (2000) Genetic insights into trophoblast differentiation and placental morphogenesis. Semin Cell Dev Biol 11:105–113

    Article  CAS  PubMed  Google Scholar 

  13. Rossant J, Cross JC (2001) Placental development: lessons from mouse mutants. Nat Rev Genet 2:538–548

    Article  CAS  PubMed  Google Scholar 

  14. Simmons DG, Cross JC (2005) Determinants of trophoblast lineage and cell subtype specification in the mouse placenta. Dev Biol 284:12–24

    Article  CAS  PubMed  Google Scholar 

  15. Knofler M, Pollheimer J (2013) Human placental trophoblast invasion and differentiation: a particular focus on Wnt signaling. Front Genet 4:190

    Article  PubMed Central  PubMed  Google Scholar 

  16. Gao X, Wen J, Zhang L, Li X, Ning Y, Meng A, Chen YG (2008) Dapper1 is a nucleocytoplasmic shuttling protein that negatively modulates Wnt signaling in the nucleus. J Biol Chem 283:35679–35688

    Article  CAS  PubMed  Google Scholar 

  17. Park JI, Ji H, Jun S, Gu D, Hikasa H, Li L, Sokol SY, McCrea PD (2006) Frodo links dishevelled to the p120-catenin/Kaiso pathway: distinct catenin subfamilies promote Wnt signals. Dev Cell 11:683–695

    Article  CAS  PubMed  Google Scholar 

  18. Cunningham FLK, Bloom S, Hauth J, Rouse D, Spong C (2010) Implantation, embryogenesis and placeta development. In: Williams Obstetrics, 23rd edn. McGraw Hill, New York, p 36

  19. Cunningham FLK, Bloom S, Hauth J, Rouse D, Spong C (2010) Fetal growth and development.  In: Williams Obstetrics, 23rd edn. McGraw Hill, New York, p 78

  20. Teran E, Branscomb AD, Seeling JM (2009) Dpr acts as a molecular switch, inhibiting Wnt signaling when unphosphorylated, but promoting Wnt signaling when phosphorylated by casein kinase Idelta/epsilon. PLoS One 4:e5522

    Article  PubMed Central  PubMed  Google Scholar 

  21. Wianny F, Real FX, Mummery CL, Van Rooijen M, Lahti J, Samarut J, Savatier P (1998) G1-phase regulators, cyclin D1, cyclin D2, and cyclin D3: up-regulation at gastrulation and dynamic expression during neurulation. Dev Dyn 212:49–62

    Article  CAS  PubMed  Google Scholar 

  22. Schreiber M, Wang ZQ, Jochum W, Fetka I, Elliott C, Wagner EF (2000) Placental vascularisation requires the AP-1 component fra1. Development 127:4937–4948

    CAS  PubMed  Google Scholar 

  23. Eferl R, Hoebertz A, Schilling AF, Rath M, Karreth F, Kenner L, Amling M, Wagner EF (2004) The Fos-related antigen Fra-1 is an activator of bone matrix formation. EMBO J 23:2789–2799

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Yang DH, Cai KQ, Roland IH, Smith ER, Xu XX (2007) Disabled-2 is an epithelial surface positioning gene. J Biol Chem 282:13114–13122

    Article  CAS  PubMed  Google Scholar 

  25. Bennett GD, Lau F, Calvin JA, Finnell RH (1997) Phenytoin-induced teratogenesis: a molecular basis for the observed developmental delay during neurulation. Epilepsia 38:415–423

    Article  CAS  PubMed  Google Scholar 

  26. Hilberg F, Aguzzi A, Howells N, Wagner EF (1993) c-jun is essential for normal mouse development and hepatogenesis. Nature 365:179–181

    Article  CAS  PubMed  Google Scholar 

  27. Eferl R, Sibilia M, Hilberg F, Fuchsbichler A, Kufferath I, Guertl B, Zenz R, Wagner EF, Zatloukal K (1999) Functions of c-Jun in liver and heart development. J Cell Biol 145:1049–1061

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Guangdong Province Science and Technology Project (2010B060900020).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Ping Yao.

Additional information

J. Hou and Y.-H. Wen contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, J., Wen, YH., Feng, KN. et al. DACT1 is involved in human placenta development by promoting Wnt signaling. Arch Gynecol Obstet 291, 1289–1296 (2015). https://doi.org/10.1007/s00404-014-3557-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-014-3557-1

Keywords

Navigation